In order to improve the query efficiency in SQL queries, we often take some measures to optimize the query statements. Some of the methods summarized below can be referred to if necessary. In the optimization experience of a certain operator, I once encountered a relatively interesting SQL, the details are as follows:
1 The execution of the initial SQL is as follows
SQL> SELECT 2 NVL(T.RELA_OFFER_SPEC_ID, SUBOS.SUB_OFFER_SPEC_ID) "offerSpecId" 3 FROM OFFER_SPEC_RELA T 4 LEFT JOIN OFFER_SPEC_GRP_RELA SUBOS 5 ON T.RELA_GRP_ID = SUBOS.OFFER_SPEC_GRP_ID 6 AND subos.start_dt <= SYSDATE 7 AND subos.end_dt >= SYSDATE 8 WHERE T.RELA_TYPE_CD = 2 9 AND t.start_dt <= SYSDATE 10 AND t.end_dt >= SYSDATE 11 AND (T.OFFER_SPEC_ID = 109910000618 12 OR EXISTS 13 (SELECT A.OFFER_SPEC_GRP_ID 14 FROM OFFER_SPEC_GRP_RELA A 15 WHERE A.SUB_OFFER_SPEC_ID = 109910000618 16 AND T.OFFER_SPEC_GRP_ID = A.OFFER_SPEC_GRP_ID 17 )) 18 AND rownum<500; no rows selected Execution Plan ---------------------------------------------------------- Plan hash value: 1350156609
Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(ROWNUM<500) 2 - filter("T"."OFFER_SPEC_ID"=109910000618 OR EXISTS (SELECT 0 FROM "SPEC"."OFFER_SPEC_GRP_RELA" "A" WHERE "A"."OFFER_SPEC_GRP_ID"=:B1 AND "A"."SUB_OFFER_SPEC_ID"=109910000618)) 3 - access("T"."RELA_GRP_ID"="SUBOS"."OFFER_SPEC_GRP_ID"(+)) 4 - filter("T"."RELA_TYPE_CD"=2 AND "T"."END_DT">=SYSDATE@! AND "T"."START_DT"<=SYSDATE@!) 5 - filter("SUBOS"."END_DT"(+)>=SYSDATE@! AND "SUBOS"."START_DT"(+)<=SYSDATE@!) 6 - access("A"."SUB_OFFER_SPEC_ID"=109910000618 AND "A"."OFFER_SPEC_GRP_ID"=:B1) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 12444 consistent gets 0 physical reads 0 redo size 339 bytes sent via SQL*Net to client 509 bytes received via SQL*Net from client 1 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 0 rows processed PLAN GET DISK WRITE ROWS ROWS USER_IO(MS) ELA(MS) CPU(MS) CLUSTER(MS) PLSQL END_TI I HASH VALUE EXEC PRE EXEC PRE EXEC PER EXEC ROW_P PRE EXEC PRE FETCH PER EXEC PRE EXEC PRE EXEC PER EXEC PER EXEC
2 First analysis
There should be the following points worth noting at this time
1) The sql is executed every day Thousands of times, the average execution returns less than 10 rows of data, but the average logical read reaches 1.2W, which may cause performance problems.
2) Two full table scans appear in the execution plan path with IDs 4 and 5. Seeing this, we can think that there may be no suitable indexes, resulting in a full table scan and low execution efficiency.
3) FILTER appears in the execution plan path with ID 2, and 3, and 6 are its sub-paths. If FILTER has two or more sub-paths, its execution principle will be similar to a nested loop. , if the subpath with the smallest ID number returns a large number of rows, it may cause the subpath with the smaller ID number to be executed multiple times, resulting in low performance. This situation generally occurs when "OR EXISTS" exists and can be avoided according to the situation.
Related links:
PHP-FPM achieves performance optimization, php-fpm performance optimization
[SQL]MySQL performance Optimization_MySQL
MySQL Optimization Video Tutorial
The above is the detailed content of SQL Optimization: A very simple article to improve SQL performance!. For more information, please follow other related articles on the PHP Chinese website!

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
