In order to improve the query efficiency in SQL queries, we often take some measures to optimize the query statements. Some of the methods summarized below can be referred to if necessary. In the optimization experience of a certain operator, I once encountered a relatively interesting SQL, the details are as follows:
1 The execution of the initial SQL is as follows
SQL> SELECT 2 NVL(T.RELA_OFFER_SPEC_ID, SUBOS.SUB_OFFER_SPEC_ID) "offerSpecId" 3 FROM OFFER_SPEC_RELA T 4 LEFT JOIN OFFER_SPEC_GRP_RELA SUBOS 5 ON T.RELA_GRP_ID = SUBOS.OFFER_SPEC_GRP_ID 6 AND subos.start_dt <= SYSDATE 7 AND subos.end_dt >= SYSDATE 8 WHERE T.RELA_TYPE_CD = 2 9 AND t.start_dt <= SYSDATE 10 AND t.end_dt >= SYSDATE 11 AND (T.OFFER_SPEC_ID = 109910000618 12 OR EXISTS 13 (SELECT A.OFFER_SPEC_GRP_ID 14 FROM OFFER_SPEC_GRP_RELA A 15 WHERE A.SUB_OFFER_SPEC_ID = 109910000618 16 AND T.OFFER_SPEC_GRP_ID = A.OFFER_SPEC_GRP_ID 17 )) 18 AND rownum<500; no rows selected Execution Plan ---------------------------------------------------------- Plan hash value: 1350156609
Predicate Information (identified by operation id): --------------------------------------------------- 1 - filter(ROWNUM<500) 2 - filter("T"."OFFER_SPEC_ID"=109910000618 OR EXISTS (SELECT 0 FROM "SPEC"."OFFER_SPEC_GRP_RELA" "A" WHERE "A"."OFFER_SPEC_GRP_ID"=:B1 AND "A"."SUB_OFFER_SPEC_ID"=109910000618)) 3 - access("T"."RELA_GRP_ID"="SUBOS"."OFFER_SPEC_GRP_ID"(+)) 4 - filter("T"."RELA_TYPE_CD"=2 AND "T"."END_DT">=SYSDATE@! AND "T"."START_DT"<=SYSDATE@!) 5 - filter("SUBOS"."END_DT"(+)>=SYSDATE@! AND "SUBOS"."START_DT"(+)<=SYSDATE@!) 6 - access("A"."SUB_OFFER_SPEC_ID"=109910000618 AND "A"."OFFER_SPEC_GRP_ID"=:B1) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 12444 consistent gets 0 physical reads 0 redo size 339 bytes sent via SQL*Net to client 509 bytes received via SQL*Net from client 1 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 0 rows processed PLAN GET DISK WRITE ROWS ROWS USER_IO(MS) ELA(MS) CPU(MS) CLUSTER(MS) PLSQL END_TI I HASH VALUE EXEC PRE EXEC PRE EXEC PER EXEC ROW_P PRE EXEC PRE FETCH PER EXEC PRE EXEC PRE EXEC PER EXEC PER EXEC
2 First analysis
There should be the following points worth noting at this time
1) The sql is executed every day Thousands of times, the average execution returns less than 10 rows of data, but the average logical read reaches 1.2W, which may cause performance problems.
2) Two full table scans appear in the execution plan path with IDs 4 and 5. Seeing this, we can think that there may be no suitable indexes, resulting in a full table scan and low execution efficiency.
3) FILTER appears in the execution plan path with ID 2, and 3, and 6 are its sub-paths. If FILTER has two or more sub-paths, its execution principle will be similar to a nested loop. , if the subpath with the smallest ID number returns a large number of rows, it may cause the subpath with the smaller ID number to be executed multiple times, resulting in low performance. This situation generally occurs when "OR EXISTS" exists and can be avoided according to the situation.
Related links:
PHP-FPM achieves performance optimization, php-fpm performance optimization
[SQL]MySQL performance Optimization_MySQL
MySQL Optimization Video Tutorial
The above is the detailed content of SQL Optimization: A very simple article to improve SQL performance!. For more information, please follow other related articles on the PHP Chinese website!

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Key metrics for EXPLAIN commands include type, key, rows, and Extra. 1) The type reflects the access type of the query. The higher the value, the higher the efficiency, such as const is better than ALL. 2) The key displays the index used, and NULL indicates no index. 3) rows estimates the number of scanned rows, affecting query performance. 4) Extra provides additional information, such as Usingfilesort prompts that it needs to be optimized.

Usingtemporary indicates that the need to create temporary tables in MySQL queries, which are commonly found in ORDERBY using DISTINCT, GROUPBY, or non-indexed columns. You can avoid the occurrence of indexes and rewrite queries and improve query performance. Specifically, when Usingtemporary appears in EXPLAIN output, it means that MySQL needs to create temporary tables to handle queries. This usually occurs when: 1) deduplication or grouping when using DISTINCT or GROUPBY; 2) sort when ORDERBY contains non-index columns; 3) use complex subquery or join operations. Optimization methods include: 1) ORDERBY and GROUPB

MySQL/InnoDB supports four transaction isolation levels: ReadUncommitted, ReadCommitted, RepeatableRead and Serializable. 1.ReadUncommitted allows reading of uncommitted data, which may cause dirty reading. 2. ReadCommitted avoids dirty reading, but non-repeatable reading may occur. 3.RepeatableRead is the default level, avoiding dirty reading and non-repeatable reading, but phantom reading may occur. 4. Serializable avoids all concurrency problems but reduces concurrency. Choosing the appropriate isolation level requires balancing data consistency and performance requirements.

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The MySQL learning path includes basic knowledge, core concepts, usage examples, and optimization techniques. 1) Understand basic concepts such as tables, rows, columns, and SQL queries. 2) Learn the definition, working principles and advantages of MySQL. 3) Master basic CRUD operations and advanced usage, such as indexes and stored procedures. 4) Familiar with common error debugging and performance optimization suggestions, such as rational use of indexes and optimization queries. Through these steps, you will have a full grasp of the use and optimization of MySQL.

MySQL's real-world applications include basic database design and complex query optimization. 1) Basic usage: used to store and manage user data, such as inserting, querying, updating and deleting user information. 2) Advanced usage: Handle complex business logic, such as order and inventory management of e-commerce platforms. 3) Performance optimization: Improve performance by rationally using indexes, partition tables and query caches.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools