This article details the basic usage of RxJava. RxJava is a magical framework with very simple usage, but the internal implementation is a bit complicated and the code logic is a bit convoluted. Online articles about RxJava source code analysis, source code posts are few and incomplete. The complete source code analysis is listed below for reference.
1. Basic usage of RxJava
Observable.create(new Observable.OnSubscribe<Object>() { @Override public void call(Subscriber<? super Object> subscriber) { } }).subscribe(new Observer<Object>() { @Override public void onCompleted() { } @Override public void onError(Throwable e) { } @Override public void onNext(Object o) { } });
2. First look at the .subscribe(new Observer
public final Subscription subscribe(final Observer<? super T> observer) { if (observer instanceof Subscriber) { return subscribe((Subscriber<? super T>)observer); } if (observer == null) { throw new NullPointerException("observer is null"); } return subscribe(new ObserverSubscriber<T>(observer)); }
This is just the passed in observer parameter A simple encapsulation (ObserverableSubscriber)
Continue to look at the subscribe method
public final Subscription subscribe(Subscriber<? super T> subscriber) { return Observable.subscribe(subscriber, this); }
static <T> Subscription subscribe(Subscriber<? super T> subscriber, Observable<T> observable) { // validate and proceed if (subscriber == null) { throw new IllegalArgumentException("subscriber can not be null"); } if (observable.onSubscribe == null) { throw new IllegalStateException("onSubscribe function can not be null."); /* * the subscribe function can also be overridden but generally that's not the appropriate approach * so I won't mention that in the exception */ } // new Subscriber so onStart it subscriber.onStart(); /* * See https://github.com/ReactiveX/RxJava/issues/216 for discussion on "Guideline 6.4: Protect calls * to user code from within an Observer" */ // if not already wrapped if (!(subscriber instanceof SafeSubscriber)) { // assign to `observer` so we return the protected version subscriber = new SafeSubscriber<T>(subscriber); } // The code below is exactly the same an unsafeSubscribe but not used because it would // add a significant depth to already huge call stacks. try { // allow the hook to intercept and/or decorate RxJavaHooks.onObservableStart(observable, observable.onSubscribe).call(subscriber); return RxJavaHooks.onObservableReturn(subscriber); } catch (Throwable e) { // special handling for certain Throwable/Error/Exception types Exceptions.throwIfFatal(e); // in case the subscriber can't listen to exceptions anymore if (subscriber.isUnsubscribed()) { RxJavaHooks.onError(RxJavaHooks.onObservableError(e)); } else { // if an unhandled error occurs executing the onSubscribe we will propagate it try { subscriber.onError(RxJavaHooks.onObservableError(e)); } catch (Throwable e2) { Exceptions.throwIfFatal(e2); // if this happens it means the onError itself failed (perhaps an invalid function implementation) // so we are unable to propagate the error correctly and will just throw RuntimeException r = new OnErrorFailedException("Error occurred attempting to subscribe [" + e.getMessage() + "] and then again while trying to pass to onError.", e2); // TODO could the hook be the cause of the error in the on error handling. RxJavaHooks.onObservableError(r); // TODO why aren't we throwing the hook's return value. throw r; // NOPMD } } return Subscriptions.unsubscribed(); } }
You only need to pay attention here
RxJavaHooks.onObservableStart(observable, observable.onSubscribe).call(subscriber);
public static <T> Observable.OnSubscribe<T> onObservableStart(Observable<T> instance, Observable.OnSubscribe<T> onSubscribe) { Func2<Observable, Observable.OnSubscribe, Observable.OnSubscribe> f = onObservableStart; if (f != null) { return f.call(instance, onSubscribe); } return onSubscribe; }
RxJavaHooks.onObservableStart(observable, observable.onSubscribe) 这个方法返回的是它的第二个参数,也就是Observable它自己的onSubscribe 对象, 所以在subscribe 方法里面调用了 onSubscribe.call(subscriber)方法
The subscriber here is the parameter passed in
protected Observable(OnSubscribe<T> f) { this.onSubscribe = f; }
public static <T> Observable<T> create(OnSubscribe<T> f) { return new Observable<T>(RxJavaHooks.onCreate(f)); }
It can be seen that the onSubscribe object is the parameter passed in by create, then the whole process is very clear
The entire process will only be executed when the subscribe method is called: subscribe ===>Call onSubscribe.call(observer ) method also passes the observer in
Related recommendations:
RxJava Operator (8) Aggregate_PHP Tutorial
Video:JavaScript Basic strengthening video tutorial
The above is the detailed content of RxJava basic usage case sharing source code analysis [with code]. For more information, please follow other related articles on the PHP Chinese website!

JVMmanagesgarbagecollectionacrossplatformseffectivelybyusingagenerationalapproachandadaptingtoOSandhardwaredifferences.ItemploysvariouscollectorslikeSerial,Parallel,CMS,andG1,eachsuitedfordifferentscenarios.Performancecanbetunedwithflagslike-XX:NewRa

Java code can run on different operating systems without modification, because Java's "write once, run everywhere" philosophy is implemented by Java virtual machine (JVM). As the intermediary between the compiled Java bytecode and the operating system, the JVM translates the bytecode into specific machine instructions to ensure that the program can run independently on any platform with JVM installed.

The compilation and execution of Java programs achieve platform independence through bytecode and JVM. 1) Write Java source code and compile it into bytecode. 2) Use JVM to execute bytecode on any platform to ensure the code runs across platforms.

Java performance is closely related to hardware architecture, and understanding this relationship can significantly improve programming capabilities. 1) The JVM converts Java bytecode into machine instructions through JIT compilation, which is affected by the CPU architecture. 2) Memory management and garbage collection are affected by RAM and memory bus speed. 3) Cache and branch prediction optimize Java code execution. 4) Multi-threading and parallel processing improve performance on multi-core systems.

Using native libraries will destroy Java's platform independence, because these libraries need to be compiled separately for each operating system. 1) The native library interacts with Java through JNI, providing functions that cannot be directly implemented by Java. 2) Using native libraries increases project complexity and requires managing library files for different platforms. 3) Although native libraries can improve performance, they should be used with caution and conducted cross-platform testing.

JVM handles operating system API differences through JavaNativeInterface (JNI) and Java standard library: 1. JNI allows Java code to call local code and directly interact with the operating system API. 2. The Java standard library provides a unified API, which is internally mapped to different operating system APIs to ensure that the code runs across platforms.

modularitydoesnotdirectlyaffectJava'splatformindependence.Java'splatformindependenceismaintainedbytheJVM,butmodularityinfluencesapplicationstructureandmanagement,indirectlyimpactingplatformindependence.1)Deploymentanddistributionbecomemoreefficientwi

BytecodeinJavaistheintermediaterepresentationthatenablesplatformindependence.1)Javacodeiscompiledintobytecodestoredin.classfiles.2)TheJVMinterpretsorcompilesthisbytecodeintomachinecodeatruntime,allowingthesamebytecodetorunonanydevicewithaJVM,thusfulf


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
