search
HomeWeb Front-endJS TutorialImplement Promise library using Js

Implement Promise library using Js

Jun 07, 2018 pm 01:46 PM
jspromisehandwriting

This time I will bring you the use of Js to implement the Promise library. What are the precautions for using Js to implement the Promise library? The following is a practical case, let's take a look.

Preface

ECMAScript is the international standard for the JavaScript language, and JavaScript is the implementation of ECMAScript. The goal of ES6 is to enable the JavaScript language to be used to write large and complex applications and become an enterprise-level development language.

Concept

ES6 natively provides Promise objects.

The so-called Promise is an object used to deliver messages for asynchronous operations. It represents an event (usually an asynchronous operation) whose result is not known until the future, and this event provides a unified API for further processing.

Three questions to think about

When I first started writing the front-end, I often used callback to handle asynchronous requests, which is simple and convenient. Later, as I wrote, I abandoned callbacks and started using promises to deal with asynchronous issues. Promise is indeed more beautiful to write, but due to the lack of deep understanding of its internal structure, every time when encountering some complex situations, it is always not easy to use promise, and debugging takes a long time.

So, in this article, I will take you to start from scratch and write a basically usable promise by hand. After I write it down, you will have a clear understanding of what promise is and its internal structure, and you will be able to use promise in complex scenarios in the future.

Moreover, in order to test whether everyone has really fully mastered promises, I will give a few practice questions related to promises at the end of the article. Although they are said to be exercises, they are actually abstractions of real scenarios that you will encounter in your projects. Mastering them proficiently can help you improve your front-end skills.

The three practice questions are given in advance. You can skip reading the content below and roughly conceive in your mind how you will solve them:

  • promise array Chain call?

  • How to control concurrency with promises?

  • How to do asynchronous caching with promise?

The above three thinking questions actually have little to do with whether you use promises or not, but if you don't deeply understand promises, it is really not that easy to solve these three problems.

What is Promise

Back to the text, what is Promise? To put it bluntly, a promise is a container that stores the result of an event (usually an asynchronous operation) that will end in the future.

First of all, ES6 stipulates that the Promise object is a constructor used to generate Promise instances. Then, this constructor accepts a function (executor) as a parameter, and the two parameters of the function are resolve and reject. Finally, after the Promise instance is generated, you can use the then method to specify the callback functions (onFulfilled and onRejected) for the resolved state and rejected state respectively.

The specific usage method is expressed in code like this:

const promise = new Promise(function(resolve, reject) {
 // ... some code
 if (/* 异步操作成功 */){
 resolve(value);
 } else {
 reject(error);
 }
});
promise.then(function(value) {
 // success
}, function(error) {
 // failure
});

After understanding this, we can boldly start constructing our own promise, and we give it a name: CutePromise

Implement a Promise: CutePromise

We directly use ES6 classes to create our CutePromise. If you are not familiar with ES6 syntax, you can Read my other two articles introducing the core syntax of ES6 before coming back. Master the core content of ES6/ES2015 in 30 minutes (Part 1), Master the core content of ES6/ES2015 in 30 minutes (Part 2)

class CutePromise {
 // executor是我们实例化CutePromise时传入的参数函数,它接受两个参数,分别是resolve和reject。
 // resolve和reject我们将会定义在constructor当中,供executor在执行的时候调用
 constructor(executor) {
 const resolve = () => {}
 const reject = () => {}
 executor(resolve, reject)
 }
 // 为实例提供一个then的方法,接收两个参数函数,
 // 第一个参数函数必传,它会在promise已成功(fulfilled)以后被调用
 // 第二个参数非必传,它会在promise已失败(rejected)以后被调用
 then(onFulfilled, onRejected) {}
}

After creating our CutePromise, let’s figure out a key point: the state of the Promise object.

The Promise object controls asynchronous operations through its own state. A Promise instance has three states:

  • Asynchronous operation is pending (pending)

  • Asynchronous operation is successful (fulfilled)

  • Asynchronous operation failed (rejected)

Among the above three states, fulfilled and rejected together are called resolved (finalized). There are only two paths for switching status: the first is from pending=>fulfilled, and the other is from pending=>rejected. Once the status is switched, it cannot be changed.

Now let’s add status to CutePromise. The approximate process is:

首先,实例化初始过程中,我们先将状态设为PENDING,然后当executor执行resolve的时候,将状态更改为FULFILLED,当executor执行reject的时候将状态更改为REJECTED。同时更新实例的value。

constructor(executor) {
 ...
 this.state = 'PENDING';
 ...
 const resolve = (result) => {
  this.state = 'FULFILLED';
  this.value = result;
 }
 const reject = (error) => {
  this.state = 'REJECTED';
  this.value = error;
 }
 ...
}

再来看下我们的then函数。then函数的两个参数,onFulfilled表示当promise异步操作成功时调用的函数,onRejected表示当promise异步操作失败时调用的函数。假如我们调用then的时候,promise已经执行完成了(当任务是个同步任务时),我们可以直接根据实例的状态来执行相应的函数。假如promise的状态还是PENDING, 那我们就将onFulfilled和onRejected直接存储到chained这个变量当中,等promise执行完再调用。

constructor(executor) {
 ...
 this.state = 'PENDING';
 
 // chained用来储存promise执行完成以后,需要被依次调用的一系列函数
 this.chained = [];
 const resolve = (result) => {
  this.state = 'FULFILLED';
  this.value = result;
  
  // promise已经执行成功了,可以依次调用.then()函数里的onFulfilled函数了
  for (const { onFulfilled } of this.chained) {
   onFulfilled(res);
  }
 }
 ...
}
then(onFulfilled, onRejected) {
 if (this.state === 'FULFILLED') {
 onFulfilled(this.value);
 } else if (this.state === 'REJECTED') {
 onRejected(this.value);
 } else {
 this.$chained.push({ onFulfilled, onRejected });
 }
}

这样我们就完成了一个CutePromise的创建,下面是完整代码,大家可以复制代码到控制台测试一下:

class CutePromise {
 constructor(executor) {
 if (typeof executor !== 'function') {
  throw new Error('Executor must be a function');
 }
 this.state = 'PENDING';
 this.chained = [];
 const resolve = res => {
  if (this.state !== 'PENDING') {
  return;
  }
  this.state = 'FULFILLED';
  this.internalValue = res;
  for (const { onFulfilled } of this.chained) {
  onFulfilled(res);
  }
 };
 const reject = err => {
  if (this.state !== 'PENDING') {
  return;
  }
  this.state = 'REJECTED';
  this.internalValue = err;
  for (const { onRejected } of this.chained) {
  onRejected(err);
  }
 };
 try {
  executor(resolve, reject);
 } catch (err) {
  reject(err);
 }
 }
 
 then(onFulfilled, onRejected) {
 if (this.state === 'FULFILLED') {
  onFulfilled(this.internalValue);
 } else if (this.$state === 'REJECTED') {
  onRejected(this.internalValue);
 } else {
  this.chained.push({ onFulfilled, onRejected });
 }
 }
}

提供一下测试代码:

let p = new CutePromise(resolve => {
 setTimeout(() => resolve('Hello'), 100);
});
p.then(res => console.log(res));
p = new CutePromise((resolve, reject) => {
 setTimeout(() => reject(new Error('woops')), 100);
});
p.then(() => {}, err => console.log('Async error:', err.stack));
p = new CutePromise(() => { throw new Error('woops'); });
p.then(() => {}, err => console.log('Sync error:', err.stack));

相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!

推荐阅读:

JS实现输入框内灰色文字提示

路径中#号怎样除去

The above is the detailed content of Implement Promise library using Js. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript in Action: Real-World Examples and ProjectsJavaScript in Action: Real-World Examples and ProjectsApr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

JavaScript and the Web: Core Functionality and Use CasesJavaScript and the Web: Core Functionality and Use CasesApr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding the JavaScript Engine: Implementation DetailsUnderstanding the JavaScript Engine: Implementation DetailsApr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: The Learning Curve and Ease of UsePython vs. JavaScript: The Learning Curve and Ease of UseApr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python vs. JavaScript: Community, Libraries, and ResourcesPython vs. JavaScript: Community, Libraries, and ResourcesApr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

From C/C   to JavaScript: How It All WorksFrom C/C to JavaScript: How It All WorksApr 14, 2025 am 12:05 AM

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

JavaScript Engines: Comparing ImplementationsJavaScript Engines: Comparing ImplementationsApr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Beyond the Browser: JavaScript in the Real WorldBeyond the Browser: JavaScript in the Real WorldApr 12, 2025 am 12:06 AM

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.