search
HomeWeb Front-endJS TutorialUsing Node.js to implement compression and decompression functions

Using Node.js to implement compression and decompression functions

Jun 06, 2018 am 09:27 AM
nodenodejscompressionunzip

This article mainly introduces the method of compression and decompression based on Node.js. Now I share it with you and give it as a reference.

Compression format

zip and gzip are the two most common compression formats we see. Of course, gzip is rarely touched under Windows.

tar is an archive format that does not compress by default. It needs to be combined with gzip to compress the final tar file into a tar.gz file in gzip format, which is usually abbreviated to tgz.

Why is rar not mentioned? Because it is a patent-protected algorithm, you can get the decompression tool for free, while the compression tool has to be paid. Therefore, in our general application scenarios, rar compressed files are rarely provided.

This article will introduce respectively how to realize the compression and decompression of gzip, tar, tgz and zip under Node.js.

Uncompressed file library

The uncompressed file library used in this article comes from urllib. You need to clone it first and go to the specified directory.

git clone https://github.com/node-modules/urllib.git nodejs-compressing-demo

gzip

on Linux In the world, the responsibilities of each tool will be very pure and very single. For example, gzip will only compress files. As for how the folder is packaged and compressed, it has nothing to do with it. That is what tar is responsible for.

gzip command line compresses a file

For example, if we want to gzip the nodejs-compressing-demo/lib/urllib.js file, we will get a urllib.js .gz file, the source file will be deleted.

$ ls -l nodejs-compressing-demo/lib/urllib.js
-rw-r--r-- 1 a a 31318 Feb 12 11:27 nodejs-compressing-demo/lib/urllib.js

$ gzip nodejs-compressing-demo/lib/urllib.js

$ ls -l nodejs-compressing-demo/lib/urllib.js.gz
-rw-r--r-- 1 a a 8909 Feb 12 11:27 nodejs-compressing-demo/lib/urllib.js.gz

# 还原压缩文件
$ gunzip nodejs-compressing-demo/lib/urllib.js.gz

The file size is reduced from 31318 bytes to 8909 bytes, more than 3.5 times the compression effect.

You can also use the pipe method, combined with the cat command, to compress and save the file as any file:

$ ls -l nodejs-compressing-demo/README.md
-rw-r--r-- 1 a a 13747 Feb 12 11:27 nodejs-compressing-demo/README.md

$ cat nodejs-compressing-demo/README.md | gzip > README.md.gz

$ ls -l README.md.gz
-rw-r--r-- 1 a a 4903 Feb 12 11:50 README.md.gz

Node.js implements gzip

Of course , we will not really implement a gzip algorithm and tool from scratch. In the world of Node.js, these basic libraries have already been prepared for you, we just need to use them out of the box.

This article will use the compressing module to implement all compression and decompression codes.

Why choose compressing? Because it has sufficient code quality and unit testing guarantees, is in an active maintenance state, has a very friendly API, and also supports streaming interfaces.

Promise interface

const compressing = require('compressing');

// 选择 gzip 格式,然后调用 compressFile 方法
compressing.gzip.compressFile('nodejs-compressing-demo/lib/urllib.js', 'nodejs-compressing-demo/lib/urllib.js.gz')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

// 解压缩是反响过程,接口都统一为 uncompress
compressing.gzip.uncompress('nodejs-compressing-demo/lib/urllib.js.gz', 'nodejs-compressing-demo/lib/urllib.js2')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

Combined with the async/await programming model, the code is written as a normal asynchronous io operation.

const compressing = require('compressing');

async function main() {
 try {
  await compressing.gzip.compressFile('nodejs-compressing-demo/lib/urllib.js',
   'nodejs-compressing-demo/lib/urllib.js.gz');
  console.log('success');
 } catch (err) {
  console.error(err);
 }

 // 解压缩
 try {
  await compressing.gzip.uncompress('nodejs-compressing-demo/lib/urllib.js.gz',
   'nodejs-compressing-demo/lib/urllib.js2');
  console.log('success');
 } catch (err) {
  console.error(err);
 }
}

main();

Stream interface

It is important to note that when programming in Stream mode, you need to handle the error event of each stream and manually destroy all streams.

fs.createReadStream('nodejs-compressing-demo/lib/urllib.js')
 .on('error', handleError)
 .pipe(new compressing.gzip.FileStream()) // It's a transform stream
 .on('error', handleError)
 .pipe(fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js.gz2'))
 .on('error', handleError);

// 解压缩,就是 pipe 的方向倒转过来
fs.createReadStream('nodejs-compressing-demo/lib/urllib.js.gz2')
 .on('error', handleError)
 .pipe(new compressing.gzip.UncompressStream()) // It's a transform stream
 .on('error', handleError)
 .pipe(fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js3'))
 .on('error', handleError);

According to the official Backpressuring in Streams recommendation, we should use the pump module to cooperate with Stream mode programming, and let pump complete the cleaning work of these Streams.

const pump = require('pump');

const source = fs.createReadStream('nodejs-compressing-demo/lib/urllib.js');
const target = fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js.gz2');

pump(source, new compressing.gzip.FileStream(), target, err => {
 if (err) {
  console.error(err);
 } else {
  console.log('success');
 }
});

// 解压缩
pump(fs.createReadStream('nodejs-compressing-demo/lib/urllib.js.gz2'),
  new compressing.gzip.FileStream(),
  fs.createWriteStream('nodejs-compressing-demo/lib/urllib.js3'),
  err => {
 if (err) {
  console.error(err);
 } else {
  console.log('success');
 }
});

Advantages of the Stream interface

The Stream interface seems much more complicated than the Promise interface. Why is there such an application scenario?

In fact, in the field of HTTP services, the Stream model will have greater advantages, because the HTTP request itself is a Request Stream. If you want to return an uploaded file with gzip compression, you do not need to save the uploaded file using the Stream interface. to the local disk, but consume this file stream directly.

Using the sample code for egg file upload, we can achieve gzip compression and return with a slight modification.

const pump = require('pump');

class UploadFormController extends Controller {
 // ... other codes

 async upload() {
  const stream = await this.ctx.getFileStream();
  // 直接将压缩流赋值给 ctx.body,实现边压缩边返回的流式响应
  this.ctx.body = pump(stream, new compressing.gzip.FileStream());
 }
}

tar | gzip > tgz

gzip Chapter You can know in advance that tar is responsible for packaging the folder.

For example, if you want to package the entire nodejs-compressing-dem o folder into a file and send it to others, you can use the tar command.

$ tar -c -f nodejs-compressing-demo.tar nodejs-compressing-demo/

$ ls -l nodejs-compressing-demo.tar
-rw-r--r-- 1 a a 206336 Feb 12 14:01 nodejs-compressing-demo.tar

As you can see, the files packaged by tar are generally larger because they are uncompressed and the size is close to the actual total size of the folder. So we will all compress at the same time as packaging.

$ tar -c -z -f nodejs-compressing-demo.tgz nodejs-compressing-demo/

$ ls -l nodejs-compressing-demo.tgz
-rw-r--r-- 1 a a 39808 Feb 12 14:07 nodejs-compressing-demo.tgz

The difference in size between tar and tgz is more than 5 times, which can greatly reduce network transmission bandwidth.

Node.js implements tgz

Promise interface

First use compressing.tar.compressDir(sourceDir, targetFile) to Pack a folder into a tar file, and then use the gzip compression method above to compress the tar file into a tgz file.

const compressing = require('compressing');

compressing.tar.compressDir('nodejs-compressing-demo', 'nodejs-compressing-demo.tar')
 .then(() => {
  return compressing.gzip.compressFile('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo.tgz');
 });
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

// 解压缩
compressing.gzip.uncompress('nodejs-compressing-demo.tgz', 'nodejs-compressing-demo.tar')
 .then(() => {
  return compressing.tar.uncompress('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo2');
 });
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

Combined with the async/await programming model, the code will be easier to read:

const compressing = require('compressing');

async function main() {
 try {
  await compressing.tar.compressDir('nodejs-compressing-demo',
   'nodejs-compressing-demo.tar');
  await compressing.gzip.compressFile('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo.tgz');
  console.log('success');
 } catch (err) {
  console.error(err);
 }
 
 // 解压缩
 try {
  await compressing.gzip.uncompress('nodejs-compressing-demo.tgz',
   'nodejs-compressing-demo.tar');
  await compressing.tar.uncompress('nodejs-compressing-demo.tar',
   'nodejs-compressing-demo2');
  console.log('success');
 } catch (err) {
  console.error(err);
 }
}

main();

Stream interface

Through compressing.tar.Stream Class, you can dynamically add any files and folders to a tar stream object, which is very flexible.

const tarStream = new compressing.tar.Stream();
// dir
tarStream.addEntry('dir/path/to/compress');
// file
tarStream.addEntry('file/path/to/compress');
// buffer
tarStream.addEntry(buffer);
// stream
tarStream.addEntry(stream);

const destStream = fs.createWriteStream('path/to/destination.tgz');
pump(tarStream, new compressing.gzip.FileStream(), destStream, err => {
 if (err) {
  console.error(err);
 } else {
  console.log('success');
 }
});

zip

zip can actually be regarded as a "commercial" combination of tar gzip. It allows users to not distinguish between compressed files and compressed folders. Anyway, just use my zip.

Example of using the zip command line tool to compress a folder:

$ zip -r nodejs-compressing-demo.zip nodejs-compressing-demo/
 adding: nodejs-compressing-demo/ (stored 0%)
 adding: nodejs-compressing-demo/test/ (stored 0%)
 ...
 adding: nodejs-compressing-demo/.travis.yml (deflated 36%)

$ ls -l nodejs-compressing-demo.*
-rw-r--r-- 1 a a 206336 Feb 12 14:06 nodejs-compressing-demo.tar
-rw-r--r-- 1 a a  39808 Feb 12 14:07 nodejs-compressing-demo.tgz
-rw-r--r-- 1 a a  55484 Feb 12 14:34 nodejs-compressing-demo.zip

By comparing the file sizes of tgz and zip, it can be seen that under the default compression parameters, gzip will perform better than zip.

Node.js implements zip

The implementation code is similar to tar, except that it is compressed by default, and there is no need to add the gzip process.

const compressing = require('compressing');

compressing.zip.compressDir('nodejs-compressing-demo', 'nodejs-compressing-demo.zip')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

// 解压缩
compressing.zip.uncompress('nodejs-compressing-demo.zip', 'nodejs-compressing-demo3')
 .then(() => {
  console.log('success');
 })
 .catch(err => {
  console.error(err);
 });

Summary

Is compression and decompression based on Node.js easier than imagined? Thanks to the giant npm, we can have the simple experience of programming with command line tools.

Whether it is the Promise interface or the Stream interface, it has its most suitable scenario. Will you choose it?

At this point, with the compression and decompression capabilities you have, what kind of services and functions can you do?

The above is what I compiled for everyone. I hope it will be helpful to everyone in the future.

Related articles:

Using tween.js to implement easing tween animation algorithm

Detailed explanation of refs in React (detailed tutorial )

How to achieve intermittent text cycle scrolling effect through JS

The above is the detailed content of Using Node.js to implement compression and decompression functions. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript in Action: Real-World Examples and ProjectsJavaScript in Action: Real-World Examples and ProjectsApr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

JavaScript and the Web: Core Functionality and Use CasesJavaScript and the Web: Core Functionality and Use CasesApr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding the JavaScript Engine: Implementation DetailsUnderstanding the JavaScript Engine: Implementation DetailsApr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: The Learning Curve and Ease of UsePython vs. JavaScript: The Learning Curve and Ease of UseApr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python vs. JavaScript: Community, Libraries, and ResourcesPython vs. JavaScript: Community, Libraries, and ResourcesApr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

From C/C   to JavaScript: How It All WorksFrom C/C to JavaScript: How It All WorksApr 14, 2025 am 12:05 AM

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

JavaScript Engines: Comparing ImplementationsJavaScript Engines: Comparing ImplementationsApr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Beyond the Browser: JavaScript in the Real WorldBeyond the Browser: JavaScript in the Real WorldApr 12, 2025 am 12:06 AM

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.