Home > Article > Backend Development > pytorch + visdom handles simple classification problems
This article mainly introduces how pytorch visdom handles simple classification problems. It has certain reference value. Now I share it with you. Friends in need can refer to it
##Environment
System: win 10Graphics card: gtx965m
cpu: i7-6700HQ
python 3.61
pytorch 0.3
Package reference
import torch from torch.autograd import Variable import torch.nn.functional as F import numpy as np import visdom import time from torch import nn,optim
Data preparation
use_gpu = True ones = np.ones((500,2)) x1 = torch.normal(6*torch.from_numpy(ones),2) y1 = torch.zeros(500) x2 = torch.normal(6*torch.from_numpy(ones*[-1,1]),2) y2 = y1 +1 x3 = torch.normal(-6*torch.from_numpy(ones),2) y3 = y1 +2 x4 = torch.normal(6*torch.from_numpy(ones*[1,-1]),2) y4 = y1 +3 x = torch.cat((x1, x2, x3 ,x4), 0).float() y = torch.cat((y1, y2, y3, y4), ).long()The visualization is as follows:
##visdom visualization preparationFirst create the windows that need to be observed
viz = visdom.Visdom() colors = np.random.randint(0,255,(4,3)) #颜色随机 #线图用来观察loss 和 accuracy line = viz.line(X=np.arange(1,10,1), Y=np.arange(1,10,1)) #散点图用来观察分类变化 scatter = viz.scatter( X=x, Y=y+1, opts=dict( markercolor = colors, marksize = 5, legend=["0","1","2","3"]),) #text 窗口用来显示loss 、accuracy 、时间 text = viz.text("FOR TEST") #散点图做对比 viz.scatter( X=x, Y=y+1, opts=dict( markercolor = colors, marksize = 5, legend=["0","1","2","3"] ), )
The effect is as follows:
Logistic regression processingInput 2, output 4
logstic = nn.Sequential( nn.Linear(2,4) )
Gpu or CPU selection:
if use_gpu: gpu_status = torch.cuda.is_available() if gpu_status: logstic = logstic.cuda() # net = net.cuda() print("###############使用gpu##############") else : print("###############使用cpu##############") else: gpu_status = False print("###############使用cpu##############")
Optimizer and loss function:
loss_f = nn.CrossEntropyLoss() optimizer_l = optim.SGD(logstic.parameters(), lr=0.001)
Training 2000 times:
start_time = time.time() time_point, loss_point, accuracy_point = [], [], [] for t in range(2000): if gpu_status: train_x = Variable(x).cuda() train_y = Variable(y).cuda() else: train_x = Variable(x) train_y = Variable(y) # out = net(train_x) out_l = logstic(train_x) loss = loss_f(out_l,train_y) optimizer_l.zero_grad() loss.backward() optimizer_l.step()
After training, observation and visualization:
if t % 10 == 0: prediction = torch.max(F.softmax(out_l, 1), 1)[1] pred_y = prediction.data accuracy = sum(pred_y ==train_y.data)/float(2000.0) loss_point.append(loss.data[0]) accuracy_point.append(accuracy) time_point.append(time.time()-start_time) print("[{}/{}] | accuracy : {:.3f} | loss : {:.3f} | time : {:.2f} ".format(t + 1, 2000, accuracy, loss.data[0], time.time() - start_time)) viz.line(X=np.column_stack((np.array(time_point),np.array(time_point))), Y=np.column_stack((np.array(loss_point),np.array(accuracy_point))), win=line, opts=dict(legend=["loss", "accuracy"])) #这里的数据如果用gpu跑会出错,要把数据换成cpu的数据 .cpu()即可 viz.scatter(X=train_x.cpu().data, Y=pred_y.cpu()+1, win=scatter,name="add", opts=dict(markercolor=colors,legend=["0", "1", "2", "3"])) viz.text("<h3 align='center' style='color:blue'>accuracy : {}</h3><br><h3 align='center' style='color:pink'>" "loss : {:.4f}</h3><br><h3 align ='center' style='color:green'>time : {:.1f}</h3>" .format(accuracy,loss.data[0],time.time()-start_time),win =text)
We first run it on the CPU once, and the results are as follows:
Then run it with gpu, the results are as follows:
I found that cpu is much faster than gpu, but I I heard that machine learning should be faster with GPUs. I searched on Baidu and found the answer on Zhihu:
My understanding is that GPUs are processing a lot of image recognition. The computing power of matrix operations and other aspects is much higher than that of the CPU. When processing some inputs and outputs with very few inputs and outputs, the CPU has the advantage.
Add a neural layer:net = nn.Sequential( nn.Linear(2, 10), nn.ReLU(), #激活函数 nn.Linear(10, 4) )
Add a 10-unit neural layer and see if there will be any effect Improvement:
Use cpu:
Use gpu:
Comparative observation does not seem to make any difference. It seems that when dealing with simple classification problems (small input and output), neural layers and GPUs will not support machine learning.
Related recommendations:
The above is the detailed content of pytorch + visdom handles simple classification problems. For more information, please follow other related articles on the PHP Chinese website!