Detailed explanation of the principle of port reuse in Node.Js
This article mainly introduces the detailed explanation of the principle of port reuse in Node.Js. It has certain reference value. Now I share it with you. Friends in need can refer to it.
This article introduces Node.Js A detailed explanation of the principle of port reuse is shared with everyone. The details are as follows:
Origin, see multi-process shared ports from official examples
const cluster = require('cluster'); const http = require('http'); const numCPUs = require('os').cpus().length; if (cluster.isMaster) { console.log(`Master ${process.pid} is running`); for (let i = 0; i < numCPUs; i++) { cluster.fork(); } cluster.on('exit', (worker, code, signal) => { console.log(`worker ${worker.process.pid} died`); }); } else { http.createServer((req, res) => { res.writeHead(200); res.end('hello world\n'); }).listen(8000); console.log(`Worker ${process.pid} started`); }
Execution result:
$ node server.js
Master 3596 is running
Worker 4324 started
Worker 4520 started
Worker 6056 started
Worker 5644 started
Understand the http.js module:
We all only need to create an http service and must reference the http module. The http module will eventually call net.js to implement network services
// lib/net.js 'use strict'; ... Server.prototype.listen = function(...args) { ... if (options instanceof TCP) { this._handle = options; this[async_id_symbol] = this._handle.getAsyncId(); listenInCluster(this, null, -1, -1, backlogFromArgs); // 注意这个方法调用了cluster模式下的处理办法 return this; } ... }; function listenInCluster(server, address, port, addressType,backlog, fd, exclusive) { // 如果是master 进程或者没有开启cluster模式直接启动listen if (cluster.isMaster || exclusive) { //_listen2,细心的人一定会发现为什么是listen2而不直接使用listen // _listen2 包裹了listen方法,如果是Worker进程,会调用被hack后的listen方法,从而避免出错端口被占用的错误 server._listen2(address, port, addressType, backlog, fd); return; } const serverQuery = { address: address, port: port, addressType: addressType, fd: fd, flags: 0 }; // 是fork 出来的进程,获取master上的handel,并且监听, // 现在是不是很好奇_getServer方法做了什么 cluster._getServer(server, serverQuery, listenOnMasterHandle); } ...
The answer can be found quickly through the cluster._getServer function
Proxy server._listen2 this method Execution operations in the work process
Send queryServer message to master and register an internal TCP server with master
// lib/internal/cluster/child.js cluster._getServer = function(obj, options, cb) { // ... const message = util._extend({ act: 'queryServer', // 关键点:构建一个queryServer的消息 index: indexes[indexesKey], data: null }, options); message.address = address; // 发送queryServer消息给master进程,master 在收到这个消息后,会创建一个开始一个server,并且listen send(message, (reply, handle) => { rr(reply, indexesKey, cb); // Round-robin. }); obj.once('listening', () => { cluster.worker.state = 'listening'; const address = obj.address(); message.act = 'listening'; message.port = address && address.port || options.port; send(message); }); }; //... // Round-robin. Master distributes handles across workers. function rr(message, indexesKey, cb) { if (message.errno) return cb(message.errno, null); var key = message.key; // 这里hack 了listen方法 // 子进程调用的listen方法,就是这个,直接返回0,所以不会报端口被占用的错误 function listen(backlog) { return 0; } // ... const handle = { close, listen, ref: noop, unref: noop }; handles[key] = handle; // 这个cb 函数是net.js 中的listenOnMasterHandle 方法 cb(0, handle); } // lib/net.js /* function listenOnMasterHandle(err, handle) { err = checkBindError(err, port, handle); server._handle = handle; // _listen2 函数中,调用的handle.listen方法,也就是上面被hack的listen server._listen2(address, port, addressType, backlog, fd); } */
The master process starts the service after receiving the queryServer message
If the address has not been monitored, start the service through RoundRobinHandle monitoring
If the address has been monitored, directly bind the handle to the service that has been monitored to consume the request
// lib/internal/cluster/master.js function queryServer(worker, message) { const args = [ message.address, message.port, message.addressType, message.fd, message.index ]; const key = args.join(':'); var handle = handles[key]; // 如果地址没被监听过,通过RoundRobinHandle监听开启服务 if (handle === undefined) { var constructor = RoundRobinHandle; if (schedulingPolicy !== SCHED_RR || message.addressType === 'udp4' || message.addressType === 'udp6') { constructor = SharedHandle; } handles[key] = handle = new constructor(key, address, message.port, message.addressType, message.fd, message.flags); } // 如果地址已经被监听,直接绑定handel到已经监听到服务上,去消费请求 // Set custom server data handle.add(worker, (errno, reply, handle) => { reply = util._extend({ errno: errno, key: key, ack: message.seq, data: handles[key].data }, reply); if (errno) delete handles[key]; // Gives other workers a chance to retry. send(worker, reply, handle); }); }
See this In the first step, it is already obvious that we know the implementation principle of multi-port sharing
In fact, the port is only listened once by the internal TCP server in the master process
Because the net.js module will determine whether the current process is the master or the Worker process
If it is the Worker process, call cluster._getServer to hack the native listen method
So the listen method called in child is an empty method that returns 0, so the port occupation error will not be reported
Now the problem is coming, since How does the Worker process obtain the connect received by the master process listening service?
Listen to the connection event of the TCP server started by the master process
Select a worker through polling
-
Send newconn internal message to it, the message body contains the client handle
With the handle, everyone knows how to deal with it haha
// lib/internal/cluster/round_robin_handle.js function RoundRobinHandle(key, address, port, addressType, fd) { this.server = net.createServer(assert.fail); if (fd >= 0) this.server.listen({ fd }); else if (port >= 0) this.server.listen(port, address); else this.server.listen(address); // UNIX socket path. this.server.once('listening', () => { this.handle = this.server._handle; // 监听onconnection方法 this.handle.onconnection = (err, handle) => this.distribute(err, handle); this.server._handle = null; this.server = null; }); } RoundRobinHandle.prototype.add = function (worker, send) { // ... }; RoundRobinHandle.prototype.remove = function (worker) { // ... }; RoundRobinHandle.prototype.distribute = function (err, handle) { // 负载均衡地挑选出一个worker this.handles.push(handle); const worker = this.free.shift(); if (worker) this.handoff(worker); }; RoundRobinHandle.prototype.handoff = function (worker) { const handle = this.handles.shift(); const message = { act: 'newconn', key: this.key }; // 向work进程其发送newconn内部消息和客户端的句柄handle sendHelper(worker.process, message, handle, (reply) => { // ... this.handoff(worker); }); };
Let’s take a look at what operations the Worker process performed after receiving the newconn message
// lib/child.js function onmessage(message, handle) { if (message.act === 'newconn') onconnection(message, handle); else if (message.act === 'disconnect') _disconnect.call(worker, true); } // Round-robin connection. // 接收连接,并且处理 function onconnection(message, handle) { const key = message.key; const server = handles[key]; const accepted = server !== undefined; send({ ack: message.seq, accepted }); if (accepted) server.onconnection(0, handle); }
Summary
net module will determine whether the process is a worker or a master. If it is a worker, it will hack the net.Server instance. listen method
The listen method called by worker is hacked and returns 0 directly, but a connection event will be registered with the master
After the master receives the client connection event, it will poll and send the client handle from the connection to the worker.
The worker receives the client handle sent by the master, and then it can process the client. Requested
Related recommendations:
Node implements static resource server
The above is the detailed content of Detailed explanation of the principle of port reuse in Node.Js. For more information, please follow other related articles on the PHP Chinese website!

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor