A simple analysis of the xlsxwriter library in python
这篇文章主要介绍了关于对python中的xlsxwriter库简单分析,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
一、xlsxwriter 基本用法,创建 xlsx 文件并添加数据
xlsxwriter 可以操作 xls 格式文件
注意:xlsxwriter 只能创建新文件,不可以修改原有文件。如果创建新文件时与原有文件同名,则会覆盖原有文件
Linux 下安装: sudo pip install XlsxWriter
Windows 下安装: pip install XlsxWriter
# coding=utf-8 from __future__ import pision import sys import xlsxwriter import xlrd import datetime output_file = u"D:\\python和shell脚本\\10969的代码\\test.xlsx" wb = xlsxwriter.Workbook(output_file) ws = wb.add_worksheet(u"活动标签") ws.set_column('A:A', 20) ws.set_column('B:B', 20) ws.set_column('C:C', 20) ws.set_column('D:D', 20) ws.write(2, 0, "123") wb.close()
二、xlsxwriter 格式处理,将待添加数据转换成相应的格式,添加到 xlsx 文件中
先设置格式,使用方法:workbook.add_format
再指定格式写入,使用方法:worksheet.write_string
#!/usr/bin/python #coding: utf-8 from datetime import datetime import xlsxwriter workbook = xlsxwriter.Workbook('Expenses02.xlsx') worksheet = workbook.add_worksheet() #设定格式,等号左边格式名称自定义,字典中格式为指定选项 #bold:加粗,num_format:数字格式 bold_format = workbook.add_format({'bold':True}) money_format = workbook.add_format({'num_format':'$#,##0'}) date_format =workbook.add_format({'num_format':'mmmm d yyyy'}) #将二行二列设置宽度为15(从0开始) worksheet.set_column(1, 1, 15) #用符号标记位置,例如:A列1行 worksheet.write('A1', 'Item', bold_format) worksheet.write('B1', 'Cost', bold_format) worksheet.write('C1', 'Cost', bold_format) expenses = ( ['Rent', '2016-03-11', 1000], ['Gad', '2016-03-12', 100], ['Food', '2016-03-13', 400], ['Gym', '2016-03-14', 50], ) row = 1 col = 0 for item, date_str, cost in (expenses): #将数据格式转化为Python datetime.datetime 格式 #之后用write_datetime方法录入日期格式 date = datetime.strptime(date_str, "%Y-%m-%d") #使用write_string方法,指定数据格式写入数据 worksheet.write_string(row, col, item) worksheet.write_datetime(row, col + 1, date, date_format) worksheet.write_number(row, col + 2, cost, money_format) row += 1 worksheet.write(row, 0, 'Total', bold_format) worksheet.write(row, 1, '=SUM(B2:B5)', money_format) workbook.close()
三、xlsxwriter 添加表格,在 xlsx 文件中添加表格
#!/usr/bin/python #coding: utf-8 import xlsxwriter workbook = xlsxwriter.Workbook('chart.xlsx') worksheet = workbook.add_worksheet() #新建图标对象 chart = workbook.add_chart({'type': 'column'}) #向 excel 中写入数据,建立图标时要用到 data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) #向图表中添加数据,例如第一行为:将A1~A5的数据转化为图表 chart.add_series({'values': '=Sheet1!$A$1:$A$5'}) chart.add_series({'values': '=Sheet1!$B$1:$B$5'}) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) #将图标插入表单中 worksheet.insert_chart('A7', chart) workbook.close()
四、更多可用的单元格式对象(Format Class)
ecxel 中每一个单元,都有如下属性:字体(fonts)、颜色(colors)、模式(patterns)、边界(borders)、alignment、number formatting
设置属性:
format = workbook.add_format() #用对象接口设置格式属性 format.set_bold() format.set_font_color('red') #用字典设置格式属性 property = { 'bold': True, 'font_color': 'red' } format = workbook.add_format(property)
相关推荐:
The above is the detailed content of A simple analysis of the xlsxwriter library in python. For more information, please follow other related articles on the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!
