search
HomeBackend DevelopmentPython TutorialPython decorator principle and usage analysis
Python decorator principle and usage analysisMay 02, 2018 pm 03:59 PM
pythonanalyzeusage

This article mainly introduces the principle and usage of Python decorators, and analyzes the concepts, principles, usage methods and related operation precautions of Python decorators in the form of examples. Friends in need can refer to this article

Examples describe the principles and usage of Python decorators. Share it with everyone for your reference, the details are as follows:

1. The essence of the decorator is the function , which is mainly used to decorate other functions, that is, Add additional functions to other functions

2. Principles of decorators:

(1) Decorators cannot modify the source code of the decorated function

(2) Decorators cannot modify the calling method of the decorated function

3. Knowledge reserve for implementing decorators

(1) Functions in Python are 'variables'

a. Storage of variables in Python

x='Tomwenxing'
y=x

[Explanation]:

##When the Python interpreter encounters the statement x='Tomwenxing' , it mainly completes two tasks:

## 1. Creates a space in the memory to store the string 'Tomwenxing'

 2. Create a variable named x in the memory and use it to point to the memory space occupied by the string 'Tomwenxing' (can be understood as the room and room number Relationship)

And the statement y=x means to assign the reference of variable x to the string to variable y,

That is, create a variable y in the memory and point it to the memory space pointed to by the variable x

b. The function is in Storage in Python

def test():
  pass

[Explanation]:

In Python, the storage of functions is similar to variables. Take the above function as an example, Python explanation It mainly does two things:

1. Open up a memory space in the memory to store the string of the function code (in this example, the code has only one sentence: pass)

# 2. Create a variable test in the memory to point to the memory space where the function code string is stored(Equivalent to test='function body')

So in Python, functions are variables

(2) Higher-order function (any one of the following two conditions is met to be a higher-order function)

a. Pass a function name as an actual parameter to another function

[Impact on decorators]: To achieve the effect of "adding functions to the decorated function without modifying its source code"

import time
def bar():
  time.sleep(2)
  print('in the bar')
def test(func):
  start_time=time.time()
  func()
  stop_time=time.time()
  print('函数的运行时间为:',stop_time-start_time)
test(bar)
Running results:

in the bar
The running time of the function is: 2.0021145343780518


b. The return value contains the function name

[Impact on decorators]: Achieve the effect of "not changing the calling method of the function"

import time
def bar():
  time.sleep(3)
  print('in the bar')
def test2(func):
  print('新添加的功能')
  return func
bar=test2(bar)
bar()
Running results:

Newly added functions
in the bar


(3) Nested function: Use def in a function body to declare a new function (not a call)
def foo():
  print('in the foo')
  def bar(): #声明一个新的函数,而不是调用函数
    print('in the bar')
  bar()
foo()

Running result:

in the foo
in the bar


4. Decorator syntax: High-order function nested function => Decorator (the following example can use the pycharm debugger Debug it and see the running sequence of the code)
import time
def timer(func):
  def deco(*args,**kwargs):#使用了不定参数
    start_time=time.time()
    res=func(*args,**kwargs) #运行函数
    stop_time=time.time()
    print('运行时间:',stop_time-start_time)
    return res # 若无返回值,则返回None
  return deco
@timer #等价于test1=timer(test1)=deco,即test1()=deco()
def test1():
  time.sleep(3)
  print('in the test1')
@timer #等价于test2=timer(test2)=deco,即test2(name)=deco(name)
def test2(name):
  time.sleep(3)
  print('in the test2',name)
test1()
print('-------------分界线------------------------')
test2('Tomwenxing')

Running result:

in the test1
Running time: 3.0001718997955322

-------- -----Boundary line---------------------
in the test2 Tomwenxing
Running time: 3.000171422958374

5. Decorator with parameters
# -*- coding:utf-8 -*-
user,passwd='Tomwenxing','123'
#如装饰器带参数,一般是三层嵌套
def auth(auth_type): #第一层的参数是装饰器的参数
  def outer_wrapper(func):#第二层的参数是装饰器要装饰的目标函数
    def wrapper(*args,**kwargs):#第三次的参数是目标函数的参数
      if auth_type=='local':
        username = input('Username:').strip()
        password = input('Password:').strip()
        if user == username and passwd == password:
          print('用户Tomwenxing已经成功登录!')
          res = func(*args, **kwargs) #运行目标函数
          return res
        else:
          exit('用户名或密码有错误')
      elif auth_type=='ldap':
        print('暂不支持这种登录方式!')
    return wrapper
  return outer_wrapper
def index():
  print('欢迎来到index页面')
@auth(auth_type='local') #home=wrapper()
def home(name):
  print('%s,欢迎来到home页面' %name)
  return 'This is home page'
@auth(auth_type='ldap')
def bbs():
  print('欢迎来到bbs页面 ')
index()
print('----------------------分界线-------------------')
print('函数的返回值为:',home('wenxing'))
print('----------------------分界线-------------------')
bbs()

Running result:

Welcome to the index page
------------ ----------Boundary line------------------

Username:Tomwenxing
Password:123
User Tomwenxing has succeeded Log in!
wenxing, welcome to the home page
The return value of the function is: This is home page
----------------------Boundary line ------------------
This login method is not supported yet!

Related recommendations:

Use python decorator to calculate function running time

Python iterator definition and simple usage analysis

The above is the detailed content of Python decorator principle and usage analysis. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use