Home >Backend Development >Python Tutorial >Sample code for implementing multi-class support vector machines using TensorFlow
This article mainly introduces the sample code for implementing multi-class support vector machines using TensorFlow. Now I share it with you and give it as a reference. Let’s take a look together
This article will show in detail a multi-class support vector machine classifier trained on the iris data set to classify three types of flowers.
The SVM algorithm was originally designed for binary classification problems, but it can also be used for multi-class classification through some strategies. The two main strategies are: one versus all (one versus all) approach; one versus one (one versus one) approach.
The one-to-one method is to design and create a binary classifier between any two types of samples, and then the category with the most votes is the predicted category of the unknown sample. But when there are many categories (k categories), k must be created! /(k-2)! 2! For a classifier, the computational cost is still quite high.
Another way to implement a multi-class classifier is one-to-many, which creates a classifier for each class. The last predicted class is the class with the largest SVM interval. This article will implement this method.
We will load the iris data set and use a nonlinear multi-class SVM model with a Gaussian kernel function. The iris data set contains three categories, mountain iris, Iris versicolor and Iris virginia (I.setosa, I.virginica and I.versicolor), for which we will create three Gaussian kernel functions SVM for prediction.
# Multi-class (Nonlinear) SVM Example #---------------------------------- # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Width) # Y: (I. setosa, I. virginica, I. versicolor) (3 classes) # # Basic idea: introduce an extra dimension to do # one vs all classification. # # The prediction of a point will be the category with # the largest margin or distance to boundary. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data # 加载iris数据集并为每类分离目标值。 # 因为我们想绘制结果图,所以只使用花萼长度和花瓣宽度两个特征。 # 为了便于绘图,也会分离x值和y值 # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([[x[0], x[3]] for x in iris.data]) y_vals1 = np.array([1 if y==0 else -1 for y in iris.target]) y_vals2 = np.array([1 if y==1 else -1 for y in iris.target]) y_vals3 = np.array([1 if y==2 else -1 for y in iris.target]) y_vals = np.array([y_vals1, y_vals2, y_vals3]) class1_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==0] class1_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==0] class2_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==1] class2_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==1] class3_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==2] class3_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==2] # Declare batch size batch_size = 50 # Initialize placeholders # 数据集的维度在变化,从单类目标分类到三类目标分类。 # 我们将利用矩阵传播和reshape技术一次性计算所有的三类SVM。 # 注意,由于一次性计算所有分类, # y_target占位符的维度是[3,None],模型变量b初始化大小为[3,batch_size] x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32) y_target = tf.placeholder(shape=[3, None], dtype=tf.float32) prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32) # Create variables for svm b = tf.Variable(tf.random_normal(shape=[3,batch_size])) # Gaussian (RBF) kernel 核函数只依赖x_data gamma = tf.constant(-10.0) dist = tf.reduce_sum(tf.square(x_data), 1) dist = tf.reshape(dist, [-1,1]) sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data))) my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists))) # Declare function to do reshape/batch multiplication # 最大的变化是批量矩阵乘法。 # 最终的结果是三维矩阵,并且需要传播矩阵乘法。 # 所以数据矩阵和目标矩阵需要预处理,比如xT·x操作需额外增加一个维度。 # 这里创建一个函数来扩展矩阵维度,然后进行矩阵转置, # 接着调用TensorFlow的tf.batch_matmul()函数 def reshape_matmul(mat): v1 = tf.expand_dims(mat, 1) v2 = tf.reshape(v1, [3, batch_size, 1]) return(tf.matmul(v2, v1)) # Compute SVM Model 计算对偶损失函数 first_term = tf.reduce_sum(b) b_vec_cross = tf.matmul(tf.transpose(b), b) y_target_cross = reshape_matmul(y_target) second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)),[1,2]) loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term))) # Gaussian (RBF) prediction kernel # 现在创建预测核函数。 # 要当心reduce_sum()函数,这里我们并不想聚合三个SVM预测, # 所以需要通过第二个参数告诉TensorFlow求和哪几个 rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1]) rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1]) pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist))) # 实现预测核函数后,我们创建预测函数。 # 与二类不同的是,不再对模型输出进行sign()运算。 # 因为这里实现的是一对多方法,所以预测值是分类器有最大返回值的类别。 # 使用TensorFlow的内建函数argmax()来实现该功能 prediction_output = tf.matmul(tf.multiply(y_target,b), pred_kernel) prediction = tf.arg_max(prediction_output-tf.expand_dims(tf.reduce_mean(prediction_output,1), 1), 0) accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target,0)), tf.float32)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop loss_vec = [] batch_accuracy = [] for i in range(100): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = x_vals[rand_index] rand_y = y_vals[:,rand_index] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x, y_target: rand_y, prediction_grid:rand_x}) batch_accuracy.append(acc_temp) if (i+1)%25==0: print('Step #' + str(i+1)) print('Loss = ' + str(temp_loss)) # 创建数据点的预测网格,运行预测函数 x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1 y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) grid_points = np.c_[xx.ravel(), yy.ravel()] grid_predictions = sess.run(prediction, feed_dict={x_data: rand_x, y_target: rand_y, prediction_grid: grid_points}) grid_predictions = grid_predictions.reshape(xx.shape) # Plot points and grid plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8) plt.plot(class1_x, class1_y, 'ro', label='I. setosa') plt.plot(class2_x, class2_y, 'kx', label='I. versicolor') plt.plot(class3_x, class3_y, 'gv', label='I. virginica') plt.title('Gaussian SVM Results on Iris Data') plt.xlabel('Pedal Length') plt.ylabel('Sepal Width') plt.legend(loc='lower right') plt.ylim([-0.5, 3.0]) plt.xlim([3.5, 8.5]) plt.show() # Plot batch accuracy plt.plot(batch_accuracy, 'k-', label='Accuracy') plt.title('Batch Accuracy') plt.xlabel('Generation') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.show() # Plot loss over time plt.plot(loss_vec, 'k-') plt.title('Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show()
Output:
Instructions for updating:
Use `argmax` instead
Step #25
Loss = -313.391
Step #50
Loss = -650.891
Step #75
Loss = -988.39
Step #100
Loss = -1325.89
Multi-classification (three categories) results of the nonlinear Gaussian SVM model of I.Setosa, where the gamma value is 10
The focus is to change the SVM algorithm to optimize three types of SVM models at one time. The model parameter b is calculated for three models by adding one dimension. We can see that the algorithm can be easily extended to multiple types of similar algorithms using TensorFlow's built-in functions.
Related recommendations:
TensorFlow implementation method of nonlinear support vector machine
The above is the detailed content of Sample code for implementing multi-class support vector machines using TensorFlow. For more information, please follow other related articles on the PHP Chinese website!