


Detailed explanation of the basic use of xpath in python crawler
This article mainly introduces the basic use of xpath in python crawler. Now I will share it with you and give you a reference. Let’s take a look together
1. Introduction
XPath is a language for finding information in XML documents. XPath can be used to traverse elements and attributes in XML documents. XPath is a major element of the W3C XSLT standard, and both XQuery and XPointer are built on XPath expressions.
2. Installation
##
pip3 install lxml
##3 , use 1, import
from lxml import etree
2, basically use
from lxml import etree wb_data = """ <p> <ul> <li class="item-0"><a href="link1.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >first item</a></li> <li class="item-1"><a href="link2.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" >second item</a></li> <li class="item-inactive"><a href="link3.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >third item</a></li> <li class="item-1"><a href="link4.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >fourth item</a></li> <li class="item-0"><a href="link5.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >fifth item</a> </ul> </p> """ html = etree.HTML(wb_data) print(html) result = etree.tostring(html) print(result.decode("utf-8"))
Judging from the results below, our printer html is actually a python object, and etree.tostring(html) is the basic writing method of incomplete html, which completes the label that is missing arms and legs.
<Element html at 0x39e58f0> <html><body><p> <ul> <li class="item-0"><a href="link1.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >first item</a></li> <li class="item-1"><a href="link2.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" >second item</a></li> <li class="item-inactive"><a href="link3.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >third item</a></li> <li class="item-1"><a href="link4.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >fourth item</a></li> <li class="item-0"><a href="link5.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >fifth item</a> </li></ul> </p> </body></html>
3. Get the content of a certain tag (basic use). Note that to get all the content of the a tag, there is no need to add a after it. Forward slash, otherwise an error will be reported.
Writing method one
html = etree.HTML(wb_data) html_data = html.xpath('/html/body/p/ul/li/a') print(html) for i in html_data: print(i.text) <Element html at 0x12fe4b8> first item second item third item fourth item fifth item
Writing method two (just add a /text() directly after the tag where you need to find the content)
html = etree.HTML(wb_data) html_data = html.xpath('/html/body/p/ul/li/a/text()') print(html) for i in html_data: print(i) <Element html at 0x138e4b8> first item second item third item fourth item fifth item
4. Open and read the html file
#使用parse打开html的文件 html = etree.parse('test.html') html_data = html.xpath('//*')<br>#打印是一个列表,需要遍历 print(html_data) for i in html_data: print(i.text)
##
html = etree.parse('test.html') html_data = etree.tostring(html,pretty_print=True) res = html_data.decode('utf-8') print(res) 打印: <p> <ul> <li class="item-0"><a href="link1.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >first item</a></li> <li class="item-1"><a href="link2.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" >second item</a></li> <li class="item-inactive"><a href="link3.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >third item</a></li> <li class="item-1"><a href="link4.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >fourth item</a></li> <li class="item-0"><a href="link5.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" >fifth item</a></li> </ul> </p>5. Print the attributes of a tag under the specified path (you can get the value of an attribute by traversing and find the content of the tag)
html = etree.HTML(wb_data) html_data = html.xpath('/html/body/p/ul/li/a/@href') for i in html_data: print(i)Print:
link1.html
link2.htmllink3.htmllink4.html link5.htmlIt is found that the a tag attribute under the absolute path is equal to link2.html.6. We know that we use xpath to get ElementTree objects one by one, so if we need to find the content, we need to traverse to get the data. list.
html = etree.HTML(wb_data) html_data = html.xpath('/html/body/p/ul/li/a[@href="link2.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ]/text()') print(html_data) for i in html_data: print(i)Print:
['second item']
second item7. Above we find all absolute paths (each one is searched from the root), below we find relative paths, for example, find the a tag content under all li tags.
html = etree.HTML(wb_data) html_data = html.xpath('//li/a/text()') print(html_data) for i in html_data: print(i)Print:
['first item', 'second item', 'third item', 'fourth item' , 'fifth item']
first itemsecond itemthird itemfourth itemfifth item8. Above we used the absolute path to find all the attributes of the a tag that are equal to the href attribute value. We used /---absolute path. Next we use the relative path to find the li tag under the l relative path. The value of the href attribute under the a tag. Note that double // is required after the a tag.
html = etree.HTML(wb_data) html_data = html.xpath('//li/a//@href') print(html_data) for i in html_data: print(i)Print:
['link1.html', 'link2.html', 'link3.html', ' link4.html', 'link5.html']
link1.htmllink2.htmllink3.htmllink4.htmllink5.html
9. The methods of checking specific attributes under relative paths are similar to those under absolute paths, or they can be said to be the same.
html = etree.HTML(wb_data) html_data = html.xpath('//li/a[@href="link2.html" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" rel="external nofollow" ]') print(html_data) for i in html_data: print(i.text)Print:
[
second item
10. Find the href attribute of the a tag in the last li tag
html = etree.HTML(wb_data) html_data = html.xpath('//li[last()]/a/text()') print(html_data) for i in html_data: print(i)Print:
['fifth item']
fifth item11. Find the href attribute of the a tag in the penultimate li tag
html = etree.HTML(wb_data) html_data = html.xpath('//li[last()-1]/a/text()') print(html_data) for i in html_data: print(i)Print:
['fourth item']
fourth item12. If you are extracting a page If the xpath path of a certain tag is as follows:
//*[@id="kw"]Explanation: Use relative paths to find all tags whose attribute id is equal to kw.
Commonly used
#!/usr/bin/env python # -*- coding:utf-8 -*- from scrapy.selector import Selector, HtmlXPathSelector from scrapy.http import HtmlResponse html = """<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <ul> <li class="item-"><a id='i1' href="link.html" rel="external nofollow" rel="external nofollow" >first item</a></li> <li class="item-0"><a id='i2' href="llink.html" rel="external nofollow" >first item</a></li> <li class="item-1"><a href="llink2.html" rel="external nofollow" rel="external nofollow" >second item<span>vv</span></a></li> </ul> <p><a href="llink2.html" rel="external nofollow" rel="external nofollow" >second item</a></p> </body> </html> """ response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8') # hxs = HtmlXPathSelector(response) # print(hxs) # hxs = Selector(response=response).xpath('//a') # print(hxs) # hxs = Selector(response=response).xpath('//a[2]') # print(hxs) # hxs = Selector(response=response).xpath('//a[@id]') # print(hxs) # hxs = Selector(response=response).xpath('//a[@id="i1"]') # print(hxs) # hxs = Selector(response=response).xpath('//a[@href="link.html" rel="external nofollow" rel="external nofollow" ][@id="i1"]') # print(hxs) # hxs = Selector(response=response).xpath('//a[contains(@href, "link")]') # print(hxs) # hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]') # print(hxs) # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]') # print(hxs) # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract() # print(hxs) # hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract() # print(hxs) # hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract() # print(hxs) # hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first() # print(hxs) # ul_list = Selector(response=response).xpath('//body/ul/li') # for item in ul_list: # v = item.xpath('./a/span') # # 或 # # v = item.xpath('a/span') # # 或 # # v = item.xpath('*/a/span') # print(v)Related recommendations:
Summary of two methods for python crawlers to use real browsers to open web pages
The above is the detailed content of Detailed explanation of the basic use of xpath in python crawler. For more information, please follow other related articles on the PHP Chinese website!

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool