Home > Article > Backend Development > Pandas multi-level grouping method to achieve sorting
The following is a pandas multi-level grouping method to implement sorting. It has a good reference value and I hope it will be helpful to everyone. Let’s take a look together
pandas has groupby grouping function and sort_values sorting function, but how to sort the dataframe after grouping?
In [70]: df = pd.DataFrame(((random.randint(2012, 2016), random.choice(['tech', 'art', 'office']), '%dk-%dk'%(random.randint(2,10), random.randint(10, 20)), '') for _ in xrange(10000)), columns=['publish_time', 'classf', 'salary', 'title']) In [71]: df.head() Out[71]: publish_time classf salary title 0 2012 art 2k-19k 1 2014 office 5k-17k 2 2013 office 2k-10k 3 2013 art 5k-14k 4 2013 art 2k-14k In [72]: df.groupby(['publish_time', 'classf', 'salary']).count()['title'].groupby(level=0, group_keys=False).nlargest(10) Out[72]: publish_time classf salary 2012 art 7k-13k 18 4k-13k 16 tech 3k-12k 14 art 6k-16k 13 8k-15k 13 office 5k-18k 13 tech 4k-14k 13
Related recommendations:
pandas implements deduplication of duplicate tables and re-converts them into tables
The above is the detailed content of Pandas multi-level grouping method to achieve sorting. For more information, please follow other related articles on the PHP Chinese website!