The following article will share with you an understanding of the central axis and dimensions of numpy. It has a good reference value and I hope it will be helpful to everyone. Let's take a look together
NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank.
For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one axis. That axis has a length of 3. In the example pictured below, the array has rank 2 (it is 2-dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.
[[ 1., 0., 0.], [ 0., 1., 2.]]
ndarray.ndim
The number of array axes, inpython## In the world of #, the number of axes is called rank
>> X = np.reshape(np.arange(24), (2, 3, 4)) # 也即 2 行 3 列的 4 个平面(plane) >> X array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]])shape function is a function in numpy.core.fromnumeric, its function It is the length of the read matrix. For example, shape[0] is the length of the first dimension of the read matrix.
shape(x)
(2,3,4)shape(x )[0]
2 orx.shape[0]
2Let’s look at the composition of each plane separately:
>> X[:, :, 0] array([[ 0, 4, 8], [12, 16, 20]]) >> X[:, :, 1] array([[ 1, 5, 9], [13, 17, 21]]) >> X[:, :, 2] array([[ 2, 6, 10], [14, 18, 22]]) >> X[:, :, 3] array([[ 3, 7, 11], [15, 19, 23]])That is, in np .arange(24)(0, 1, 2, 3, ..., 23) When rearranging, in the directions of multiple axes of a multi-dimensional array, the last axis is allocated first (for a two-dimensional array, that is, first Allocate the direction of the row. For a three-dimensional array, allocate the direction of the plane first)
reshpae is a method in the array object, used to change the shape of the array.
Two-dimensional array
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a d=a.reshape((2,4)) print d
Three-dimensional array
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a f=a.reshape((2, 2, 2)) print f
##The principle of shape change is that the array elements cannot change, for example, it is written like this Wrong because the array elements have changed.
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a print a.dtype e=a.reshape((2,2)) print e
Note: The new array generated by reshape and the original array share the same memory, that is to say, if one is changed elements of the array, the other array will also be changed.
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a e=a.reshape((2, 4)) print e a[1]=100 print a print e
a=np.arange(0, 60, 10) >>>a array([0,10,20,30,40,50]) >>>a.reshape(-1,1) array([[0], [10], [20], [30], [40], [50]])
If written as a.reshape(1,1), an error will be reported##ValueError:cannot reshape array of size 6 into shape (1,1)
>>> a = np.array([[1,2,3], [4,5,6]]) >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]])-1 means I am too lazy to calculate what number to fill in, by python through a and others The value 3 is inferred.
# 下面是两张2*3大小的照片(不知道有几张照片用-1代替),如何把所有二维照片给摊平成一维 >>> image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]]) >>> image.shape (2, 2, 3) >>> image.reshape((-1, 6)) array([[1, 2, 3, 4, 5, 6], [1, 1, 1, 1, 1, 1]])Related recommendations:
The difference between array and asarray in numpy
The above is the detailed content of Axes and dimensions in numpy. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Dreamweaver Mac version
Visual web development tools

Atom editor mac version download
The most popular open source editor
