


Detailed explanation of how python reads text data and converts it into DataFrame format
This time I will bring you python a detailed explanation of the method of reading text data and converting it into DataFrame format. What are the precautions for reading text data and converting it into DataFrame in Python? The following is a practical case, let’s take a look.
I saw a question like this in a technical Q&A, and I thought it was relatively common, so I wrote a separate article about it.
Read data from the plain text format file "file_in" in the following format:
Needs to be output as "file_out", the format is as follows:
The original format of the data is "Category: Content", with blank lines "\n" means sub-entries. After conversion, it becomes one entry per line, and the content is written out in order of category.
It is recommended that after reading, use pandas to create a table called DataFrame from the data. This will make it easier to process the data later. But the original format is not the usual table format, so some simple processing needs to be done first.
#coding:utf8 import sys from pandas import DataFrame #DataFrame通常来装二维的表格 import pandas as pd #pandas是流行的做数据分析的包 #建立字典,键和值都从文件里读出来。键是nam,age……,值是lili,jim…… dict_data={} #打开文件 with open('file_in.txt','r')as df: #读每一行 for line in df: #如果这行是换行符就跳过,这里用'\n'的长度来找空行 if line.count('\n') == len(line): continue #对每行清除前后空格(如果有的话),然后用":"分割 for kv in [line.strip().split(':')]: #按照键,把值写进去 dict_data.setdefault(kv[0],[]).append(kv[1]) #print(dict_data)看看效果 #这是把键读出来成为一个列表 columnsname=list(dict_data.keys()) #建立一个DataFrame,列名即为键名,也就是nam,age…… frame = DataFrame(dict_data,columns=columnsname) #把DataFrame输出到一个表,不要行名字和列名字 frame.to_csv('file_out0.txt',index=False,header=False)
I believe you have mastered the method after reading the case in this article. For more exciting information, please pay attention to other related articles on the php Chinese website!
Recommended reading:
How to convert object into float data
How python handles the time field of dataframe
The above is the detailed content of Detailed explanation of how python reads text data and converts it into DataFrame format. For more information, please follow other related articles on the PHP Chinese website!

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

Python is suitable for rapid development and data processing, while C is suitable for high performance and underlying control. 1) Python is easy to use, with concise syntax, and is suitable for data science and web development. 2) C has high performance and accurate control, and is often used in gaming and system programming.

The time required to learn Python varies from person to person, mainly influenced by previous programming experience, learning motivation, learning resources and methods, and learning rhythm. Set realistic learning goals and learn best through practical projects.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!

Zend Studio 13.0.1
Powerful PHP integrated development environment