search
HomeBackend DevelopmentPython Tutorialpython method to normalize multidimensional array

python method to normalize multidimensional array

Apr 09, 2018 am 11:38 AM
pythonarraymethod

The content of this article is to share with you the method of normalizing multi-dimensional arrays in python. It has certain reference value. Friends in need can refer to it.

Today I encountered a problem that requires normalizing multi-dimensional arrays. , but a lot of information I checked on the Internet is a row or a column of a normalized array. There is relatively little information on how to normalize a multi-dimensional array. However, in tensorflow, multi-dimensional data is often needed to train neural networks. Therefore normalizing multi-dimensional arrays is very necessary.

After consulting a large amount of information, I found that preprocessing in the sklearn library can directly normalize multi-dimensional arrays.

1. Use the sklearn.preprocessing.scale() function to standardize the given data: the specific formula is (x - mean)/std. Its meaning is: subtract the mean of each column from the data in this column, and then divide by the standard deviation of the data in this column. The final data obtained are all near 0 and the variance is 1. Specific program examples are as follows:

from sklearn import preprocessing

data_normal = preprocessing.scale(data)#data是多维数据

2, Use the sklearn.preprocessing.StandardScaler class. This class can calculate the mean and variance of each column of data, and directly classify the original data according to the mean and variance. One transformation. A simple example is as follows:

from sklearn import preprocessing

#计算原始数据每行和每列的均值和方差,data是多维数据
scaler = preprocessing.StandardScaler().fit(data)
#得到每列的平均值,是一维数组
mean = scaler.mean_ 
#得到每列的标准差,是一维数组   
std = scaler.std_                                        
#标准化数据
data_nomal = scaler.transform(data)    
#可以直接使用训练集对测试集数据进行转换  
scaler.transform([[-1.,  1., 0.]])

3, sklearn.preprocessing.MinMaxScaler class scales the data to a specified range. Specific examples are as follows:

from sklearn import preprocessing

min_max_scaler = preprocessing.MinMaxScaler()
#标准化训练集数据
data_train_nomal = min_max_scaler.fit_transform(data_train)
 
#对测试集数据进行相同的归一化处理
data_test_minmax = min_max_scaler.transform(data_test)
#获取缩放因子属性,结果是一维数组
min_max_scaler.scale_                             
min_max_scaler.min_

4. Attached sklearn.preprocessing can also do regularization

(1) preprocessing.normalize( ) Perform regularization transformation on the data

data_normalized = preprocessing.normalize(data, norm='l2')

(2)preprocessing.Normalizer()fit the data first and then perform regularization transformation on the data

normalizer = preprocessing.Normalizer().fit(data)  #拟合原始数据,data是多维数组
normalizer.transform(data) #正则化


Related recommendations:

How to convert a python string into a two-dimensional array

python divide and conquer method to find local peak value of two-dimensional array_python



##

The above is the detailed content of python method to normalize multidimensional array. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.