search
HomeWeb Front-endJS TutorialDetailed explanation of the basic operation methods of Python-OpenCV_python

The editor below will share with you a detailed explanation of the basic operation methods of Python-OpenCV. It has a good reference value and I hope it will be helpful to everyone. Let’s follow the editor to take a look

Basic properties

cv2.imread (file name, properties) Read in the image

Attribute: Specify how the image is read from the file

cv2.IMREAD_COLOR: Read in color images, default parameters, Opencv reads color images in BGR mode! ! ! Note

cv2.IMREAD_GRAYSCALE: Read in grayscale images.

cv2.imshow(window name, image file) Display image

Can create multiple windows

cv2.waitKey() keyboard binding function

The function waits for a specific number of milliseconds to see if there is input from the keyboard.

cv2.namedWindow(window name, attribute) Create a window

Attribute: Specify window size mode

cv2.WINDOW_AUTOSIZE: Automatically based on image size Create size

cv2.WINDOW_NORMAL: The window size can be adjusted

cv2.destoryAllWindows(window name) Delete any created window

Code example:

import cv2
 img=cv2.imread('test.py',cv2.IMREAD_COLOR)
 cv2.namedWindow('image',cv2.WINDOW_NORMAL)
 cv2.imshow('image',img)
 cv2.waitKey(0)
 cv2.destoryAllWindows()

cv2.imwrite(save image name, need to save image) Save image

Code example:

 import cv2
 img=cv2.imread('test.png',0)
 cv2.imshow('image',img)
 k=cv2.waitKey(0)
 if k==27: #等待 ESC 键
  cv2.destoryAllWindows()
 elif k==ord('s') #等待 's' 键来保存和退出
  cv2.imwrite('messigray.png',img)
  cv2.destoryAllWindows()

Some operations on images

0x01. Get image attributes

import cv2
img=img.imread('test.png')
print img.shape
#(768,1024,3)
print img.size
#2359296 768*1024*3
print img.dtype
#uint8

0x02. Output text

When processing pictures, output some information directly in the form of text. On the picture

cv2.putText(picture name, text, coordinates, text color)

##0x03. Zoom picture

Implement scaling and saving of images, a common operation when using OpenCV. cv2.resize() supports a variety of interpolation algorithms. By default, cv2.INTER_LINEAR is used. The most suitable one for reducing is cv2.INTER_AREA. The most suitable one for enlarging is cv2.INTER_CUBIC or cv2.INTER_LINEAR.

res=cv2.resize(image,(2*width,2*height),interpolation=cv2.INTER_CUBIC)

Or:

res=cv2.resize(image,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC)

None here should be the size of the output image , because the scaling factor

0x04 is set later. The image translation is

cv2.warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]])

The translation is Change the position of the image. If you want to move in the (x, y) direction and the movement distance is (tx, ty), you need to construct an offset matrix M.

For example, pan the picture (100,50)

 import cv2
 img=cv2.imread('test.png',1)
 rows,cols,channel=img.shape
 M=np.float32([[1,0,100],[0,1,50]])
 dst=cv2.warpAffine(img,M,(cols,rows))
 cv2.imshow('img',dst)
 cv2.waitKey(0)
 cv2.destoryALLWindows()

Where (cols, rows) represents the size of the output image, M is the transformation matrix, 100 represents the offset of x, and 50 represents the offset of y, in pixels.

0x05. Image rotation

In OpenCV, you first need to construct a rotation matrix, which is obtained through cv2.getRotationMatrix2D.

import cv2
img=cv2.imread('test.png',0)
rows,cols=img.shape
#第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
M=cv2.getRotationMatrix2D((cols/2,rows/2),45,0.6)
#第三个参数为图像的尺寸中心
dst=cv2.warpAffine(img,M,(2*cols,2*rows))
cv2.imshow('img',dst)
cv2.waitKey(0)
cv2.destoryALLWindows()

0x06. Affine transformation

In affine transformation, the original image All parallel lines in are equally parallel in the resulting image. To create the offset matrix, you need to find three points in the original image and their positions in the output image. Then OpenCV provides cv2.getAffineTransform to create a 2*3 matrix, and finally passes the matrix to the function cv2.warpAffine.

import cv2
import matplotlib.pyplot as plt
import numpy as np
img=cv2.imread('test.png')
rows,cols,ch=img.shape
pts1=np.float32([[50,50],[200,50],[50,200]])
pts2=np.float32([[10,100],[200,50],[100,250]])
M=cv2.getAffineTransform(pts1,pts2)
dst=cv2.warpAffine(img,M,(cols,rows))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()

##0x07. Perspective transformation Perspective transformation requires a 3*3 transformation matrix. Make sure the straight line is still straight before and after the transformation. Constructing this matrix requires finding 4 points in the input image and their corresponding positions in the output image. Any three of these four points cannot be collinear. Transformation matrix OpenCV provides cv2.getPerspectiveTransform() construction. Then pass the matrix into the function cv2.warpPerspective.

import cv2
import numpy as np
import matplotlib.pyplot as plt
img=cv2.imread('test.png')
rows,cols,ch=img.shape
pts1=np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2=np.float32([[0,0],[300,0],[0,300],[300,300]])
M=cv2.getPerspectiveTransform(pts1,pts2)
dst=cv2.warpPerspective(img,M,(300,300))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()

##0x09. Image regions of Interest

Sometimes it is necessary to operate on a specific area of ​​an image, and the ROI is obtained using Numpy index.

import cv2
import numpy as np
import matplotlib.pyplot as plt

image=cv2.imread('test.png')
rows,cols,ch=image.shape
tall=image[0:100,300:700]
image[0:100,600:1000]=tallall
cv2.imshow("image",image)
cv2.waitKey(0)
cv2.destoryALLWindows()

##0x10. Channel split/merge processing

Sometimes it is necessary to operate the three BGR channels separately. At this time, the BGR needs to be split into a single channel. At the same time, sometimes it is necessary to merge independent channel images into a BGR image.

Use OpenCV library function version

import cv2
import numpy as np
import matplotlib.pyplot as plt

image=cv2.imread('pitt1.jpg')
rows,cols,ch=image.shape
#拆分通道,cv2.split()是一个比较耗时的操作。只有需要时使用,尽量Numpy
b,g,r=cv2.split(image)
print b.shape
#(768,1024)
#合并通道
image=cv2.merge(b,g,r)

Use Numpy index version:

import cv2
import numpy as np
import matplotlib.pyplot as plt

image=cv2.imread('pitt1.jpg')
rows,cols,ch=image.shape
#直接获取
b=img[:,:,0]


The above is the detailed content of Detailed explanation of the basic operation methods of Python-OpenCV_python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. JavaScript: A Comparative Analysis for DevelopersPython vs. JavaScript: A Comparative Analysis for DevelopersMay 09, 2025 am 12:22 AM

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Python vs. JavaScript: Choosing the Right Tool for the JobPython vs. JavaScript: Choosing the Right Tool for the JobMay 08, 2025 am 12:10 AM

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript: Understanding the Strengths of EachPython and JavaScript: Understanding the Strengths of EachMay 06, 2025 am 12:15 AM

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScript's Core: Is It Built on C or C  ?JavaScript's Core: Is It Built on C or C ?May 05, 2025 am 12:07 AM

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools