search
HomeWeb Front-endJS TutorialExplanation of the sliding focus carousel diagram in practical implementation of encapsulated motion framework

This article mainly brings you a focus carousel diagram (example) that encapsulates the movement framework and actually slides left and right and up and down. The editor thinks it’s pretty good, so I’ll share it with you now and give it as a reference. Let’s follow the editor to take a look, I hope it can help everyone.

In this articleBuilding a universal uniform motion framework (explanation with examples), a uniform motion framework is encapsulated. On the basis of this framework, we add the buffering motion effect, Then use the motion frame to make the slideshow (up and down, left and right).

Buffer movement usually has two common manifestations: for example, letting a p move from 0 to 500, one is when the event is triggered, the speed is very fast, the other is When the event is triggered, it is slow, and then slowly speeds up. Let's implement blocking first and then slowing down. A common way is to drive. For example, a car that just got off the highway is 120km/h, and then enters the ramp and becomes 40km/h. Or Entering the community at 40km/h, and finally parking, it becomes 0km/h. From 120km/h->40km/h, or 40km->0km/h, the speed first slows down and then slows down. How can I use a program to do this kind of exercise? What does it mean?

You can use the target distance (500) - current distance (200) / a coefficient (such as 12) to achieve a speed change from block to slow. The current distance is between At the starting point, the numerator (500 - 0) is the largest, so the speed is the largest. If the current distance is close to 500, the molecule is the smallest, and the speed after division is also the smallest.


<style>
 p{
  width: 200px;
  height: 200px;
  background:red;
  position: absolute;
  left: 0px;
 }
 </style>
 <script>
 window.onload = function(){
  var oBtn = document.querySelector( "input" ),
  oBox = document.querySelector( &#39;#box&#39; ),
  speed = 0, timer = null;
  oBtn.onclick = function(){
  timer = setInterval( function(){
   speed = ( 500 - oBox.offsetLeft ) / 8;
   oBox.style.left = oBox.offsetLeft + speed + &#39;px&#39;;
  }, 30 );
  }
 }
 </script>
</head>
<body>
 <input type="button" value="动起来">
 <p id="box"></p>
</body>

However, p will not stop at the target position of 500px, but will eventually stop at 497.375px. Just check the current speed and the current value to know The reason

You will find that the speed always stops at 0.375, and the current distance obtained stops at 497px? There is a problem here. Doesn’t our p stop at 497.375px? How can we get it without the decimal 0.375? Computers suffer a loss of precision when processing floating point numbers. We can do a small test separately:


<p id="box"></p>
 <script>
 var oBox = document.querySelector( &#39;#box&#39; );
 alert( oBox.offsetLeft );
 </script>

You will find that the left offset obtained by this code is 30px instead of 30.2px written in the interline style. Because decimals are rounded off when obtaining the current position, the speed will always stop at 0.375px, and the position will always stop at 497. Therefore, in order to reach the target, we have to change the speed to 1 and round the speed up ( Math .ceil ), we can change the speed to 1, and p can also reach 500


oBtn.onclick = function(){
 timer = setInterval( function(){
 speed = ( 500 - oBox.offsetLeft ) / 8;
 if( speed > 0 ) {
  speed = Math.ceil( speed );
 }
 console.log( speed, oBox.offsetLeft );
 oBox.style.left = oBox.offsetLeft + speed + &#39;px&#39;;
 }, 30 );
}

The second question, if the position of p is at 900, that is to say From 900 to 500, is there such a demand? There must be one, the carousel picture looks like this from right to left.


<style>
 #box{
  width: 200px;
  height: 200px;
  background:red;
  position: absolute;
  left: 900px;
 }
 </style>
 <script>// <![CDATA[
 window.onload = function(){
  var oBtn = document.querySelector( "input" ),
  oBox = document.querySelector( &#39;#box&#39; ),
  speed = 0, timer = null;
  oBtn.onclick = function(){
  timer = setInterval( function(){
   speed = ( 500 - oBox.offsetLeft ) / 8;
   if( speed > 0 ) {
   speed = Math.ceil( speed );
   }
   oBox.style.left = oBox.offsetLeft + speed + &#39;px&#39;;
  }, 30 );
  }
 }
 // ]]></script>
</head>
<body>
 <input type="button" value="动起来">
 <p id="box"></p>
</body>

The final target stops at 503.5px, the speed is negative at this time, and the final speed stops at -0.5. For the speed in the opposite direction, we need to change it to -1 to reach the target, so use rounding down (Math.floor)


##

oBtn.onclick = function(){
 timer = setInterval( function(){
 speed = ( 500 - oBox.offsetLeft ) / 8;
 if( speed > 0 ) {
  speed = Math.ceil( speed );
 }else {
  speed = Math.floor( speed );
 }
 console.log( speed, oBox.offsetLeft );
 oBox.style.left = oBox.offsetLeft + speed + &#39;px&#39;;
 }, 30 );
}

Then we integrate this buffering movement When we reach the uniform motion frame, it becomes:


function css(obj, attr, value) {
 if (arguments.length == 3) {
 obj.style[attr] = value;
 } else {
 if (obj.currentStyle) {
  return obj.currentStyle[attr];
 } else {
  return getComputedStyle(obj, false)[attr];
 }
 }
}

function animate(obj, attr, fn) {
 clearInterval(obj.timer);
 var cur = 0;
 var target = 0;
 var speed = 0;
 obj.timer = setInterval(function () {
 var bFlag = true;
 for (var key in attr) {
  if (key == &#39;opacity &#39;) {
  cur = css(obj, &#39;opacity&#39;) * 100;
  } else {
  cur = parseInt(css(obj, key));
  }
  target = attr[key];
  speed = ( target - cur ) / 8;
  speed = speed > 0 ? Math.ceil(speed) : Math.floor(speed);
  if (cur != target) {
  bFlag = false;
  if (key == &#39;opacity&#39;) {
   obj.style.opacity = ( cur + speed ) / 100;
   obj.style.filter = "alpha(opacity:" + ( cur + speed ) + ")";
  } else {
   obj.style[key] = cur + speed + "px";
  }
  }
 }
 if (bFlag) {
  clearInterval(obj.timer);
  fn && fn.call(obj);
 }
 }, 30 );
}

With this uniform motion frame, we will make a slideshow:

HTML for upper and lower slides Style file:


<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>slide - by ghostwu</title>
 <link rel="stylesheet" href="css/slide3.css" rel="external nofollow" >
 <script src="js/animate.js"></script>
 <script src="js/slide.js"></script>
</head>
<body>
<p id="slide">
 <p id="slide-img">
 <p id="img-container">
  <img src="/static/imghwm/default1.png"  data-src="./img/1.jpg"  class="lazy"   alt="">
  <img src="/static/imghwm/default1.png"  data-src="./img/2.jpg"  class="lazy"   alt="">
  <img src="/static/imghwm/default1.png"  data-src="./img/3.jpg"  class="lazy"   alt="">
  <img src="/static/imghwm/default1.png"  data-src="./img/4.jpg"  class="lazy"   alt="">
  <img src="/static/imghwm/default1.png"  data-src="./img/5.jpg"  class="lazy"   alt="">
 </p>
 </p>
 <p id="slide-nums">
 <ul>
  <li class="active"></li>
  <li></li>
  <li></li>
  <li></li>
  <li></li>
 </ul>
 </p>
</p>
</body>
</html>

slide3.css file:


* {
 margin: 0;
 padding: 0;
}
li {
 list-style-type: none;
}
#slide {
 width: 800px;
 height: 450px;
 position: relative;
 margin:20px auto;
}
#slide-img {
 position: relative;
 width: 800px;
 height: 450px;
 overflow: hidden;
}
#img-container {
 position: absolute;
 left: 0px;
 top: 0px;
 height: 2250px;
 /*font-size:0px;*/
}
#img-container img {
 display: block;
 float: left;
}
#slide-nums {
 position: absolute;
 right:10px;
 bottom:10px;
}
#slide-nums li {
 float: left;
 margin:0px 10px;
 background: white;
 width: 20px;
 height: 20px;
 text-align: center;
 line-height: 20px;
 border-radius:10px;
 text-indent:-999px;
 opacity:0.6;
 filter:alpha(opacity:60);
 cursor:pointer;
}
#slide-nums li.active {
 background: red;
}

animate.js file:


function css(obj, attr, value) {
 if (arguments.length == 3) {
 obj.style[attr] = value;
 } else {
 if (obj.currentStyle) {
  return obj.currentStyle[attr];
 } else {
  return getComputedStyle(obj, false)[attr];
 }
 }
}

function animate(obj, attr, fn) {
 clearInterval(obj.timer);
 var cur = 0;
 var target = 0;
 var speed = 0;
 obj.timer = setInterval(function () {
 var bFlag = true;
 for (var key in attr) {
  if (key == &#39;opacity &#39;) {
  cur = css(obj, &#39;opacity&#39;) * 100;
  } else {
  cur = parseInt(css(obj, key));
  }
  target = attr[key];
  speed = ( target - cur ) / 8;
  speed = speed > 0 ? Math.ceil(speed) : Math.floor(speed);
  if (cur != target) {
  bFlag = false;
  if (key == &#39;opacity&#39;) {
   obj.style.opacity = ( cur + speed ) / 100;
   obj.style.filter = "alpha(opacity:" + ( cur + speed ) + ")";
  } else {
   obj.style[key] = cur + speed + "px";
  }
  }
 }
 if (bFlag) {
  clearInterval(obj.timer);
  fn && fn.call(obj);
 }
 }, 30 );
}

slide.js file:


window.onload = function () {
 function Slide() {
 this.oImgContainer = document.getElementById("img-container");
 this.aLi = document.getElementsByTagName("li");
 this.index = 0;
 }

 Slide.prototype.bind = function () {
 var that = this;
 for (var i = 0; i < this.aLi.length; i++) {
  this.aLi[i].index = i;
  this.aLi[i].onmouseover = function () {
  that.moveTop( this.index );
  }
 }
 }

 Slide.prototype.moveTop = function (i) {
 this.index = i;
 for( var j = 0; j < this.aLi.length; j++ ){
  this.aLi[j].className = &#39;&#39;;
 }
 this.aLi[this.index].className = &#39;active&#39;;
 animate( this.oImgContainer, {
  "top" : -this.index * 450,
  "left" : 0
 });
 }
 
 var oSlide = new Slide();
 oSlide.bind();

}

You only need to change the style of the left and right slides

Style file :


* {
 margin: 0;
 padding: 0;
}
li {
 list-style-type: none;
}
#slide {
 width: 800px;
 height: 450px;
 position: relative;
 margin:20px auto;
}
#slide-img {
 position: relative;
 width: 800px;
 height: 450px;
 overflow: hidden;
}
#img-container {
 position: absolute;
 left: 0px;
 top: 0px;
 width: 4000px;
}
#img-container img {
 display: block;
 float: left;
}
#slide-nums {
 position: absolute;
 right:10px;
 bottom:10px;
}
#slide-nums li {
 float: left;
 margin:0px 10px;
 background: white;
 width: 20px;
 height: 20px;
 text-align: center;
 line-height: 20px;
 border-radius:10px;
 text-indent:-999px;
 opacity:0.6;
 filter:alpha(opacity:60);
 cursor:pointer;
}
#slide-nums li.active {
 background: red;
}

js calling file:


window.onload = function () {
 function Slide() {
 this.oImgContainer = document.getElementById("img-container");
 this.aLi = document.getElementsByTagName("li");
 this.index = 0;
 }

 Slide.prototype.bind = function () {
 var that = this;
 for (var i = 0; i < this.aLi.length; i++) {
  this.aLi[i].index = i;
  this.aLi[i].onmouseover = function () {
  that.moveLeft( this.index );
  }
 }
 }

 Slide.prototype.moveLeft = function (i) {
 this.index = i;
 for( var j = 0; j < this.aLi.length; j++ ){
  this.aLi[j].className = &#39;&#39;;
 }
 this.aLi[this.index].className = &#39;active&#39;;
 animate( this.oImgContainer, {
  "left" : -this.index * 800
 });
 }
 
 var oSlide = new Slide();
 oSlide.bind();

}

Related recommendations:


How to create a universal uniform motion framework

A way to write a JS package motion frame

An example of JavaScript implementing a buffer motion frame

The above is the detailed content of Explanation of the sliding focus carousel diagram in practical implementation of encapsulated motion framework. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
The Role of C/C   in JavaScript Interpreters and CompilersThe Role of C/C in JavaScript Interpreters and CompilersApr 20, 2025 am 12:01 AM

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

JavaScript in Action: Real-World Examples and ProjectsJavaScript in Action: Real-World Examples and ProjectsApr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

JavaScript and the Web: Core Functionality and Use CasesJavaScript and the Web: Core Functionality and Use CasesApr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding the JavaScript Engine: Implementation DetailsUnderstanding the JavaScript Engine: Implementation DetailsApr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: The Learning Curve and Ease of UsePython vs. JavaScript: The Learning Curve and Ease of UseApr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python vs. JavaScript: Community, Libraries, and ResourcesPython vs. JavaScript: Community, Libraries, and ResourcesApr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

From C/C   to JavaScript: How It All WorksFrom C/C to JavaScript: How It All WorksApr 14, 2025 am 12:05 AM

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

JavaScript Engines: Comparing ImplementationsJavaScript Engines: Comparing ImplementationsApr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft