JavaScript Of course it is indispensable to have objects in it, the this keyword! With the this keyword JavaScript, the code will be reduced. Today we will analyze this in JavaScript!
Implicit binding
Regarding this, generally speaking, whoever calls a method will point to whom this method points to, such as:
function foo(){ console.log(this.a) } var a = 3; var obj = { a: 2, foo: foo }; obj.foo(); // 输出2,因为是obj调用的foo,所以foo的this指向了obj,而obj.a = 2
If there are multiple calls, the objectPropertiesOnly the upper or last layer of the reference chain works in the calling location, such as:
function foo() { console.log( this.a ) } var obj2 = { a: 42, foo: foo } var obj1 = { a: 2, obj2: obj2 } obj1.obj2.foo(); // 42
Implicit loss
One of the most common this binding problems is that implicitly bound functions will lose the binding object. That is to say, it should apply the default binding, thereby binding this to the global object or undefined, depending on whether it is in strict mode.
function foo() { console.log( this.a ) } var obj1 = { a: 2, foo: foo } var bar = obj1.foo; // 函数别名! var a = "oops, global"; // a是全局对象的属性 bar(); // "oops, global"
Although bar is a reference to obj.foo, in fact, it refers to the foo function itself, so bar() at this time is actually a function call without any modification, so it is applied Default binding
A subtler, more common and more unexpected situation occurs when passing in the callback function:
function foo() { console.log( this.a ) } function doFoo( fn ){ // fn 其实引用的是 foo fn(); // <-- 调用位置! } var obj = { a: 2, foo: foo } var a = "oops, global"; // a是全局对象的属性 doFoo( obj.foo ); // "oops, global"
Parameter passing is actually an implicit formula assignment, so when we pass in the function, it will also be implicitly assigned, so the result is the same as the previous example. If the function is passed into the language's built-in function instead of passing in the self-declared function (such as setTimeout, etc.), the result will be the same.
Explicit binding
Simply put, it means specifying this, such as: call, apply, bind, new binding, etc.
Hard binding
function foo( something ) { console.log( this.a, something) return this.a + something } var obj = { a: 2 } var bar = function() { return foo.apply( obj, arguments) } var b = bar(3); // 2 3 console.log(b); // 5
Here is a brief explanation: In the bar function, foo uses the apply function to bind obj, which means that this in foo will point to obj, at the same time, uses arguments (no limit on the number of parameters passed in) as parameters and passes them into the foo function; so when running bar(3), first output obj.a, which is 2 and the passed in 3, and then foo returns the sum of the two, so the value of b is 5
Similarly, this example can also use bind:
function foo( something ) { console.log( this.a, something) return this.a + something } var obj = { a: 2 } var bar = foo.bind(obj) var b = bar(3); // 2 3 console.log(b); // 5
new binding
In traditional class-oriented languages, when using new to initialize a class, the constructor in the class will be called, but new in JS The mechanism is actually completely different from class-oriented and language-oriented.
Use new to call a function, or when a constructor call occurs, the following operations will be automatically performed:
Create (or construct) a brand new object
This The new object will be executed [[Prototype]] connection
This new object will be bound to this
of the function call If the function does not return other objects, then newExpression## The function in # will automatically return this new object such as:
function foo(a){ this.a = a } var bar = new foo(2); console.log(bar.a); // 2When using new to call foo(...), we will construct a new object and bind it to this in the call to foo(...) . new is the last method that can affect the this binding behavior when a function is called. We call it new binding. There is no doubt that the priority of the default binding is the lowest among the four rules , so we can ignore it first.
function foo(a){ console.log(this.a) } var obj1 = { a: 2, foo: foo } var obj2 = { a: 3, foo: foo } obj1.foo(); // 2 obj2.foo(); // 3 obj1.foo.call(obj2); // 3 obj2.foo.call(obj1); // 2As you can see, explicit binding has a higher priority, which means that whether explicit binding can exist should be considered first when making a judgment. Now we need to figure out who has a higher priority and which has a lower priority between new binding and implicit binding:
function foo(something){ this.a = something } var obj1 = { foo: foo } var obj2 = {} obj1.foo(2); console.log(obj1.a); // 2 obj1.foo.call(obj2,3); console.log(obj2.a); // 3 var bar = new obj1.foo(4) console.log(obj1.a); // 2 console.log(bar.a); // 4You can see that new binding has a higher priority than implicit binding. But which one has higher priority, new binding or explicit binding?
function foo(something){ this.a = something } var obj1 = {} var bar = foo.bind(obj1); bar(2); console.log(obj1.a); // 2 var baz = new bar(3); console.log(obj1.a); // 2 console.log(baz.a); // 3You can see that new binding modifies this in hard binding, so new binding has a higher priority than explicit binding.
function foo(p1,p2){ this.val = p1 + p2; } // 之所以使用null是因为在本例中我们并不关心硬绑定的this是什么 // 反正使用new时this会被修改 var bar = foo.bind(null,'p1'); var baz = new bar('p2'); baz.val; // p1p2 }Currying: Intuitively, currying states that "if you fix some parameters, you will get a function that accepts the remaining parameters." So for the function yx with two variables, if y = 2 is fixed, we get the function 2x with one variable
##This application in arrow functions The arrow function does not use the four standard rules of this, but determines this based on the outer (function or global) scope.
我们来看一下箭头函数的词法作用域:
function foo() { // 返回一个箭头函数 return (a) => { // this继承自foo() console.log(this.a) }; } var obj1 = { a: 2 }; var obj2 = { a: 3 }; var bar = foo.call(obj1); bar.call(obj2); // 2, 不是3!
foo()内部创建的箭头函数会捕获调用时foo()的this。由于foo()的this绑定到obj1,bar(引用箭头函数)的this也会绑定到obj1,箭头函数的绑定无法被修改。(new也不行!)
总结
如果要判断一个运行中的函数的this绑定,就需要找到这个函数的直接调用位置。找到之后就可以顺序应用下面这四条规则来判断this的绑定对象。
由new调用?绑定到新创建的对象。
由call或者apply(或者bind)调用?绑定到指定的对象。
由上下文对象调用?绑定到那个上下文对象。
默认:在严格模式下绑定到undefined,否则绑定到全局对象。
相关推荐:
The above is the detailed content of Comprehensive analysis of this in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment