


Detailed explanation of the use of (urlparse) templates in python
The following editor will bring you a summary of how to use python (urlparse) templates. The editor thinks it’s pretty good, so I’ll share it with you now and give it as a reference. Let’s follow the editor and take a look.
1. Introduction
urlparse module users parse the url into 6 components and use tuples Return in the form, the six parts returned are: scheme (protocol), netloc (network location), path (path), params (path segment parameters), query (query), fragment (fragment).
2. Function enumeration
1. urlparse.urlparse()(Parse url into components, url must be Starting with http://)
>>> urlparse.urlparse("https://i.cnblogs.com/EditPosts.aspx?opt=1") ParseResult(scheme='https', netloc='i.cnblogs.com', path='/EditPosts.aspx', params='', query='opt=1', fragment='')
The returned element will also contain other attributes, such as (username, password, hostname, port):
>>> urlparse.urlparse("https://i.cnblogs.com:80/EditPosts.aspx?opt=1").port 80
>>> urlparse.urlparse("https://i.cnblogs.com:80/EditPosts.aspx?opt=1").hostname 'i.cnblogs.com'
2. urlparse.urljoin() (Combines relative addresses into a url. There is no limit on input. The beginning must be Is http://, otherwise the front will not be combined)
>>> urlparse.urljoin("https://i.cnblogs.com","EditPosts.aspx") 'https://i.cnblogs.com/EditPosts.aspx'
3. urlparse.urlsplit(): Returns a tuple of 5 elements , suitable for URLs that follow RFC2396
##
>>> urlparse.urlsplit("https://i.cnblogs.com:80/EditPosts.aspx?opt=1") SplitResult(scheme='https', netloc='i.cnblogs.com:80', path='/EditPosts.aspx', query='opt=1', fragment='')
4. urlparse.urlunsplit(): Use the urlsplit format to combine into a url, and the passed elements must is 5, or directly reassemble the decomposed tuples
>>> urlparse.urlunsplit(("https","i.cnblogs.com","EditPosts.aspx","a=a","b=b")) 'https://i.cnblogs.com/EditPosts.aspx?a=a#b=b'
>>> parse = urlparse.urlsplit("https://i.cnblogs.com:80/EditPosts.aspx?opt=1") >>> urlparse.urlunsplit(parse) 'https://i.cnblogs.com:80/EditPosts.aspx?opt=1'
5, urlparse.urlunparse(): Use the format of urlparse to combine into a url, you can directly pass the return combination of urlparse
>>> parse = urlparse.urlparse("https://i.cnblogs.com:80/EditPosts.aspx?opt=1") >>> urlparse.urlunparse(parse) 'https://i.cnblogs.com:80/EditPosts.aspx?opt=1'
>>> urlparse.urlunparse(("https","i.cnblogs.com","/EditPosts.aspx","","opt=1","")) 'https://i.cnblogs.com/EditPosts.aspx?opt=1'
The above is the detailed content of Detailed explanation of the use of (urlparse) templates in python. For more information, please follow other related articles on the PHP Chinese website!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
