search
HomeBackend DevelopmentPython TutorialIntroduction to the method of drawing 3D graphs using Matplotlib in python

This article mainly introduces the example code of Matplotlib in python to draw 3D images. It has certain reference value. Those who are interested can learn about it.

Matplotlib can also draw 3D images, which is different from two-dimensional images. What is interesting is that drawing three-dimensional images is mainly achieved through the mplot3d module. However, using Matplotlib to draw three-dimensional images is actually displayed on a two-dimensional canvas, so generally when drawing three-dimensional images, you also need to load the pyplot module.
mplot3d module mainly contains 4 major categories, namely:

  • mpl_toolkits.mplot3d.axes3d()

  • mpl_toolkits.mplot3d .axis3d()

  • mpl_toolkits.mplot3d.art3d()

  • mpl_toolkits.mplot3d.proj3d()

Among them, axes3d() mainly includes various classes and methods for implementing drawing. axis3d() mainly includes classes and methods related to coordinate axes. art3d() contains classes and methods that convert 2D images and use them for 3D drawing. proj3d() contains some fragmented classes and methods, such as calculating the length of three-dimensional vectors.

Generally, what we use most is the mpl_toolkits.mplot3d.axes3d.Axes3D() class in mpl_toolkits.mplot3d.axes3d(), and there are different types of 3D drawing under Axes3D() diagram method. You can import Axes3D() in the following way.

from mpl_toolkits.mplot3d.axes3d import Axes3D or from mpl_toolkits.mplot3d import Axes3D

Three-dimensional scatter plot

First, we import Numpy randomly generates a set of data.


import numpy as np

# x, y, z 均为 0 到 1 之间的 100 个随机数
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)
z = np.random.normal(0, 1, 100)

Next, start drawing. The first step is to load the 2D and 3D drawing modules.


from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

The second step is to use Axes3D() to create a 3D graphics object.


fig = plt.figure()
ax = Axes3D(fig)

Finally, call the scatter plot drawing method to draw and display it.


ax.scatter(x, y, z)
plt.show()

Three-dimensional line chart

The line chart is similar to the scatter chart and needs to be passed in x, y, z The numerical value of the coordinate. The detailed code is as follows.


# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 绘制线型图
ax.plot(x, y, z)

# 显示图
plt.show()

Three-dimensional bar chart

After drawing the line chart, we continue to try to draw the three-dimensional bar chart. In fact, its drawing steps Again very similar to above.


# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据并绘图
x = [0, 1, 2, 3, 4, 5, 6]
for i in x:
  y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  z = abs(np.random.normal(1, 10, 10))
  ax.bar(y, z, i, zdir='y', color=['r', 'g', 'b', 'y'])
plt.show()

Three-dimensional surface graph

The next three-dimensional surface graph that needs to be drawn is a little more troublesome. We need to matrix the data. deal with. In fact, it is very similar to drawing a two-dimensional contour map, except that one more dimension is added.


# 载入模块
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(X ** 2 + Y ** 2)

# 绘制曲面图,并使用 cmap 着色
ax.plot_surface(X, Y, Z, cmap=plt.cm.winter)

plt.show()

cmap=plt.cm.winter indicates that the winter color scheme is used, which is the gradient color in the picture below.

Mixed graph drawing

Mixed graph is to draw two different types of graphs in one graph. There is generally a prerequisite for drawing a mixed diagram, that is, the range of the two different types of diagrams is roughly the same, otherwise there will be serious proportional disharmony, making the mixed diagram meaningless.


# -*- coding: utf-8 -*
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

# 创建 3D 图形对象
fig = plt.figure()
ax = Axes3D(fig)

# 生成数据并绘制图 1
x1 = np.linspace(-3 * np.pi, 3 * np.pi, 500)
y1 = np.sin(x1)
ax.plot(x1, y1, zs=0, c='red')

# 生成数据并绘制图 2
x2 = np.random.normal(0, 1, 100)
y2 = np.random.normal(0, 1, 100)
z2 = np.random.normal(0, 1, 100)
ax.scatter(x2, y2, z2)

# 显示图
plt.show()

Subgraph drawing


##

# -*- coding: utf-8 -*
# 载入模块
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

# 创建 1 张画布
fig = plt.figure()

#===============

# 向画布添加子图 1 
ax1 = fig.add_subplot(1, 2, 1, projection='3d')

# 生成子图 1 数据
x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)
y = np.sin(x)
z = np.cos(x)

# 绘制第 1 张图
ax1.plot(x, y, z)

#===============

# 向画布添加子图 2
ax2 = fig.add_subplot(1, 2, 2, projection='3d')

# 生成子图 2 数据
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = np.sqrt(X ** 2 + Y ** 2)

# 绘制第 2 张图
ax2.plot_surface(X, Y, Z, cmap=plt.cm.winter)

# 显示图
plt.show()

We can take a look at these codes. Since the two sub-pictures are drawn on one canvas, a canvas needs to be created in advance. Then add a subplot through .add_subplot(). The subplot serial number is similar to that of two-dimensional plotting. Just note that the projection='3d' parameter must be added when doing 3D plotting.

The above is the detailed content of Introduction to the method of drawing 3D graphs using Matplotlib in python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python in Action: Real-World ExamplesPython in Action: Real-World ExamplesApr 18, 2025 am 12:18 AM

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python's Main Uses: A Comprehensive OverviewPython's Main Uses: A Comprehensive OverviewApr 18, 2025 am 12:18 AM

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor