search
HomeBackend DevelopmentPython TutorialDetailed code example of how Python implements matrix class

This article mainly introduces the matrix class implemented in Python, and analyzes the definition, calculation, conversion and other related operation skills of Python matrices in the form of complete examples. Friends in need can refer to the following

The examples in this article describe Matrix class implemented in Python. Share it with everyone for your reference, the details are as follows:

Scientific calculation is inseparable from matrix operations. Of course, python already has a very good ready-made library: numpy(Simple installation and use of numpy

I wrote this matrix class, not intending to recreate it The wheel is just an exercise, recorded here.

Note: All functions of this class have not been implemented yet, and they will be improved slowly.

Full code:


import copy
class Matrix:
  '''矩阵类'''
  def __init__(self, row, column, fill=0.0):
    self.shape = (row, column)
    self.row = row
    self.column = column
    self._matrix = [[fill]*column for i in range(row)]
  # 返回元素m(i, j)的值: m[i, j]
  def __getitem__(self, index):
    if isinstance(index, int):
      return self._matrix[index-1]
    elif isinstance(index, tuple):
      return self._matrix[index[0]-1][index[1]-1]
  # 设置元素m(i,j)的值为s: m[i, j] = s
  def __setitem__(self, index, value):
    if isinstance(index, int):
      self._matrix[index-1] = copy.deepcopy(value)
    elif isinstance(index, tuple):
      self._matrix[index[0]-1][index[1]-1] = value
  def __eq__(self, N):
    '''相等'''
    # A == B
    assert isinstance(N, Matrix), "类型不匹配,不能比较"
    return N.shape == self.shape # 比较维度,可以修改为别的
  def __add__(self, N):
    '''加法'''
    # A + B
    assert N.shape == self.shape, "维度不匹配,不能相加"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] + N[r, c]
    return M
  def __sub__(self, N):
    '''减法'''
    # A - B
    assert N.shape == self.shape, "维度不匹配,不能相减"
    M = Matrix(self.row, self.column)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = self[r, c] - N[r, c]
    return M
  def __mul__(self, N):
    '''乘法'''
    # A * B (或:A * 2.0)
    if isinstance(N, int) or isinstance(N,float):
      M = Matrix(self.row, self.column)
      for r in range(self.row):
        for c in range(self.column):
          M[r, c] = self[r, c]*N
    else:
      assert N.row == self.column, "维度不匹配,不能相乘"
      M = Matrix(self.row, N.column)
      for r in range(self.row):
        for c in range(N.column):
          sum = 0
          for k in range(self.column):
            sum += self[r, k] * N[k, r]
          M[r, c] = sum
    return M
  def __p__(self, N):
    '''除法'''
    # A / B
    pass
  def __pow__(self, k):
    '''乘方'''
    # A**k
    assert self.row == self.column, "不是方阵,不能乘方"
    M = copy.deepcopy(self)
    for i in range(k):
      M = M * self
    return M
  def rank(self):
    '''矩阵的秩'''
    pass
  def trace(self):
    '''矩阵的迹'''
    pass
  def adjoint(self):
    '''伴随矩阵'''
    pass
  def invert(self):
    '''逆矩阵'''
    assert self.row == self.column, "不是方阵"
    M = Matrix(self.row, self.column*2)
    I = self.identity() # 单位矩阵
    I.show()#############################
    # 拼接
    for r in range(1,M.row+1):
      temp = self[r]
      temp.extend(I[r])
      M[r] = copy.deepcopy(temp)
    M.show()#############################
    # 初等行变换
    for r in range(1, M.row+1):
      # 本行首元素(M[r, r])若为 0,则向下交换最近的当前列元素非零的行
      if M[r, r] == 0:
        for rr in range(r+1, M.row+1):
          if M[rr, r] != 0:
            M[r],M[rr] = M[rr],M[r] # 交换两行
          break
      assert M[r, r] != 0, '矩阵不可逆'
      # 本行首元素(M[r, r])化为 1
      temp = M[r,r] # 缓存
      for c in range(r, M.column+1):
        M[r, c] /= temp
        print("M[{0}, {1}] /= {2}".format(r,c,temp))
      M.show()
      # 本列上、下方的所有元素化为 0
      for rr in range(1, M.row+1):
        temp = M[rr, r] # 缓存
        for c in range(r, M.column+1):
          if rr == r:
            continue
          M[rr, c] -= temp * M[r, c]
          print("M[{0}, {1}] -= {2} * M[{3}, {1}]".format(rr, c, temp,r))
        M.show()
    # 截取逆矩阵
    N = Matrix(self.row,self.column)
    for r in range(1,self.row+1):
      N[r] = M[r][self.row:]
    return N
  def jieti(self):
    '''行简化阶梯矩阵'''
    pass
  def transpose(self):
    '''转置'''
    M = Matrix(self.column, self.row)
    for r in range(self.column):
      for c in range(self.row):
        M[r, c] = self[c, r]
    return M
  def cofactor(self, row, column):
    '''代数余子式(用于行列式展开)'''
    assert self.row == self.column, "不是方阵,无法计算代数余子式"
    assert self.row >= 3, "至少是3*3阶方阵"
    assert row <= self.row and column <= self.column, "下标超出范围"
    M = Matrix(self.column-1, self.row-1)
    for r in range(self.row):
      if r == row:
        continue
      for c in range(self.column):
        if c == column:
          continue
        rr = r-1 if r > row else r
        cc = c-1 if c > column else c
        M[rr, cc] = self[r, c]
    return M
  def det(self):
    &#39;&#39;&#39;计算行列式(determinant)&#39;&#39;&#39;
    assert self.row == self.column,"非行列式,不能计算"
    if self.shape == (2,2):
      return self[1,1]*self[2,2]-self[1,2]*self[2,1]
    else:
      sum = 0.0
      for c in range(self.column+1):
        sum += (-1)**(c+1)*self[1,c]*self.cofactor(1,c).det()
      return sum
  def zeros(self):
    &#39;&#39;&#39;全零矩阵&#39;&#39;&#39;
    M = Matrix(self.column, self.row, fill=0.0)
    return M
  def ones(self):
    &#39;&#39;&#39;全1矩阵&#39;&#39;&#39;
    M = Matrix(self.column, self.row, fill=1.0)
    return M
  def identity(self):
    &#39;&#39;&#39;单位矩阵&#39;&#39;&#39;
    assert self.row == self.column, "非n*n矩阵,无单位矩阵"
    M = Matrix(self.column, self.row)
    for r in range(self.row):
      for c in range(self.column):
        M[r, c] = 1.0 if r == c else 0.0
    return M
  def show(self):
    &#39;&#39;&#39;打印矩阵&#39;&#39;&#39;
    for r in range(self.row):
      for c in range(self.column):
        print(self[r+1, c+1],end=&#39; &#39;)
      print()
if __name__ == &#39;__main__&#39;:
  m = Matrix(3,3,fill=2.0)
  n = Matrix(3,3,fill=3.5)
  m[1] = [1.,1.,2.]
  m[2] = [1.,2.,1.]
  m[3] = [2.,1.,1.]
  p = m * n
  q = m*2.1
  r = m**3
  #r.show()
  #q.show()
  #print(p[1,1])
  #r = m.invert()
  #s = r*m
  print()
  m.show()
  print()
  #r.show()
  print()
  #s.show()
  print()
  print(m.det())

The above is the detailed content of Detailed code example of how Python implements matrix class. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version