Home >Backend Development >Python Tutorial >Detailed examples of iterators and generators in Python
Definition
class Iterable(metaclass=ABCMeta): __slots__ = () @abstractmethod def __iter__(self): while False: yield None @classmethod def __subclasshook__(cls, C): if cls is Iterable: if any("__iter__" in B.__dict__ for B in C.__mro__): return True return NotImplemented
It can be seen from the definition that Iterable
must contain __iter__
Function
Definition
class Iterator(Iterable): __slots__ = () @abstractmethod def __next__(self): 'Return the next item from the iterator. When exhausted, raise StopIteration' raise StopIteration def __iter__(self): return self @classmethod def __subclasshook__(cls, C): if cls is Iterator: if (any("__next__" in B.__dict__ for B in C.__mro__) and any("__iter__" in B.__dict__ for B in C.__mro__)): return True return NotImplemented
It can be seen from the definition that Iterator
contains__next__
And __iter__
function, when next exceeds the scope, it will throw StopIteration
event
type relationship
#! /usr/bin/python #-*-coding:utf-8-*- from collections import Iterator,Iterable # 迭代器 s = 'abc' l = [1,2,3] d=iter(l) print(isinstance(s,Iterable)) # True print(isinstance(l,Iterable)) # True print(isinstance(s,Iterator)) # False print(isinstance(l,Iterator)) # False print(isinstance(d,Iterable)) # True print(isinstance(d,Iterator)) # True
Theoretically you You can use next()
to execute __next__()
until the iterator throws StopIteration
Actually the system provides for .. in ..
way to parse iterator
l = [1,2,3,4] for i in l: print(i) # 执行结果 # 1 # 2 # 3 # 4
The essence of the generator is an iterator
#! /usr/bin/python #-*-coding:utf-8-*- from collections import Iterator,Iterable s = (x*2 for x in range(5)) print(s) print('Is Iterable:' + str(isinstance(s,Iterable))) print('Is Iterator:' + str(isinstance(s,Iterator))) for x in s: print(x) # 执行结果 # <generator object <genexpr> at 0x000001E61C11F048> # Is Iterable:True # Is Iterator:True # 0 # 2 # 4 # 6 # 8
function If yield
exists, the function is a generator object. Each time the next
function is executed, the function will start executing at the previous yield
. And return at the next yield
(equivalent to return
)
def foo(): print("First") yield 1 print("Second") yield 2 f = foo() print(f) a = next(f) print(a) b = next(f) print(b) # <generator object foo at 0x0000020B697F50F8> # First # 1 # Second # 2
Example
#! /usr/bin/python #-*-coding:utf-8-*- def add(s,x): return s+x def gen(): for i in range(4): yield i base = gen() # 由于gen函数中存在yield,所以 # for 循环本质是创建了两个generator object,而非执行函数 # base = (add(i,10) for i in base) # base = (add(i,10) for i in base) for n in [1,10]: base = (add(i,n) for i in base) # 这里才开始展开生成器 # 第一个生成器展开 # base = (add(i,10) for i in base) # base = (add(i,10) for i in range(4)) # base = (10,11,12,13) # # 第二个生成器展开 # base = (add(i,10) for i in (10,11,12,13)) # base = (20,21,22,23) print(list(base)) # [20,21,22,23]
The above is the detailed content of Detailed examples of iterators and generators in Python. For more information, please follow other related articles on the PHP Chinese website!