Home >Backend Development >Python Tutorial >Simple example sharing of recursive neural network implementation in Python
This article mainly introduces the recursive neural network implemented in Python. It is an article excerpted from github code snippets. It involves operating skills related to Python recursion and mathematical operations. Friends in need can refer to this article
The example describes the recursive neural network implemented in Python. Share it with everyone for your reference, the details are as follows:
# Recurrent Neural Networks import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def sigmoid(x): output = 1/(1+np.exp(-x)) return output # convert output of sigmoid function to its derivative def sigmoid_output_to_derivative(output): return output*(1-output) # training dataset generation int2binary = {} binary_dim = 8 largest_number = pow(2,binary_dim) binary = np.unpackbits( np.array([range(largest_number)],dtype=np.uint8).T,axis=1) for i in range(largest_number): int2binary[i] = binary[i] # input variables alpha = 0.1 input_dim = 2 hidden_dim = 16 output_dim = 1 # initialize neural network weights synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1 synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1 synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1 synapse_0_update = np.zeros_like(synapse_0) synapse_1_update = np.zeros_like(synapse_1) synapse_h_update = np.zeros_like(synapse_h) # training logic for j in range(10000): # generate a simple addition problem (a + b = c) a_int = np.random.randint(largest_number/2) # int version a = int2binary[a_int] # binary encoding b_int = np.random.randint(largest_number/2) # int version b = int2binary[b_int] # binary encoding # true answer c_int = a_int + b_int c = int2binary[c_int] # where we'll store our best guess (binary encoded) d = np.zeros_like(c) overallError = 0 layer_2_deltas = list() layer_1_values = list() layer_1_values.append(np.zeros(hidden_dim)) # moving along the positions in the binary encoding for position in range(binary_dim): # generate input and output X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]]) y = np.array([[c[binary_dim - position - 1]]]).T # hidden layer (input ~+ prev_hidden) layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h)) # output layer (new binary representation) layer_2 = sigmoid(np.dot(layer_1,synapse_1)) # did we miss?... if so, by how much? layer_2_error = y - layer_2 layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2)) overallError += np.abs(layer_2_error[0]) # decode estimate so we can print(it out) d[binary_dim - position - 1] = np.round(layer_2[0][0]) # store hidden layer so we can use it in the next timestep layer_1_values.append(copy.deepcopy(layer_1)) future_layer_1_delta = np.zeros(hidden_dim) for position in range(binary_dim): X = np.array([[a[position],b[position]]]) layer_1 = layer_1_values[-position-1] prev_layer_1 = layer_1_values[-position-2] # error at output layer layer_2_delta = layer_2_deltas[-position-1] # error at hidden layer layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1) # let's update all our weights so we can try again synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta) synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta) synapse_0_update += X.T.dot(layer_1_delta) future_layer_1_delta = layer_1_delta synapse_0 += synapse_0_update * alpha synapse_1 += synapse_1_update * alpha synapse_h += synapse_h_update * alpha synapse_0_update *= 0 synapse_1_update *= 0 synapse_h_update *= 0 # print(out progress) if j % 1000 == 0: print("Error:" + str(overallError)) print("Pred:" + str(d)) print("True:" + str(c)) out = 0 for index,x in enumerate(reversed(d)): out += x*pow(2,index) print(str(a_int) + " + " + str(b_int) + " = " + str(out)) print("------------")
Run output:
Error:[ 3.45638663] Pred:[0 0 0 0 0 0 0 1] True:[0 1 0 0 0 1 0 1] 9 + 60 = 1 ------------ Error:[ 3.63389116] Pred:[1 1 1 1 1 1 1 1] True:[0 0 1 1 1 1 1 1] 28 + 35 = 255 ------------ Error:[ 3.91366595] Pred:[0 1 0 0 1 0 0 0] True:[1 0 1 0 0 0 0 0] 116 + 44 = 72 ------------ Error:[ 3.72191702] Pred:[1 1 0 1 1 1 1 1] True:[0 1 0 0 1 1 0 1] 4 + 73 = 223 ------------ Error:[ 3.5852713] Pred:[0 0 0 0 1 0 0 0] True:[0 1 0 1 0 0 1 0] 71 + 11 = 8 ------------ Error:[ 2.53352328] Pred:[1 0 1 0 0 0 1 0] True:[1 1 0 0 0 0 1 0] 81 + 113 = 162 ------------ Error:[ 0.57691441] Pred:[0 1 0 1 0 0 0 1] True:[0 1 0 1 0 0 0 1] 81 + 0 = 81 ------------ Error:[ 1.42589952] Pred:[1 0 0 0 0 0 0 1] True:[1 0 0 0 0 0 0 1] 4 + 125 = 129 ------------ Error:[ 0.47477457] Pred:[0 0 1 1 1 0 0 0] True:[0 0 1 1 1 0 0 0] 39 + 17 = 56 ------------ Error:[ 0.21595037] Pred:[0 0 0 0 1 1 1 0] True:[0 0 0 0 1 1 1 0] 11 + 3 = 14 ------------
The above is the detailed content of Simple example sharing of recursive neural network implementation in Python. For more information, please follow other related articles on the PHP Chinese website!