This article mainly introduces the relevant information of Richter's substitution principle in detail, which has certain reference value. Interested friends can refer to it
Let's talk about Richter's substitution principle .
Definition 1: If for every object o1 of type T1, there is an object o2 of type T2, so that all programs P defined with T1 are represented in all objects o1 When changing to o2, the behavior of program P does not change, then type T2 is a subtype of type T1.
Definition 2: All places that reference a base class must be able to transparently use objects of its subclasses.
Origin of the problem: There is a function P1, which is completed by class A. Now it is necessary to expand the function P1, and the expanded function is P, where P consists of the original function P1 and the new function P2. The new function P is implemented by subcategory B of category A. Subcategory B may cause the original function P1 to malfunction while completing the new function P2.
Solution: When using inheritance, follow the Liskov substitution principle. When class B inherits class A, except for adding new methods to complete the new function P2, try not to override the methods of parent class A, and try not to overload the methods of parent class A.
Inheritance contains the following meaning: all methods that have been implemented in the parent class (relative to abstract methods) are actually setting a series of specifications and contracts, although it does not It is mandatory for all subclasses to comply with these contracts, but if subclasses arbitrarily modify these non-abstract methods, it will cause damage to the entire inheritance system. The Liskov substitution principle expresses this meaning.
As one of the three major features of object-oriented, inheritance brings great convenience to programming, but it also brings disadvantages. For example, using inheritance will bring intrusion to the program, reduce the portability of the program, and increase the coupling between objects. If a class is inherited by other classes, when this class needs to be modified, all subclasses must be taken into account. class, and after the parent class is modified, all functions involving the subclass may malfunction.
To give an example of the risk of inheritance, we need to complete a function of subtracting two numbers, and class A is responsible for it.
class A{ public int func1(int a, int b){ return a-b; } } public class Client{ public static void main(String[] args){ A a = new A(); System.out.println("100-50="+a.func1(100, 50)); System.out.println("100-80="+a.func1(100, 80)); } }
Running results:
100-50=50
100-80=20
Later, we need to add a new function: complete the addition of two numbers, and then sum it with 100. Class B is responsible for this. That is, Class B needs to complete two functions:
Subtract two numbers.
Add the two numbers, and then add 100.
Since class A has already implemented the first function, after class B inherits class A, it only needs to complete the second function. The code is as follows:
class B extends A{ public int func1(int a, int b){ return a+b; } public int func2(int a, int b){ return func1(a,b)+100; } } public class Client{ public static void main(String[] args){ B b = new B(); System.out.println("100-50="+b.func1(100, 50)); System.out.println("100-80="+b.func1(100, 80)); System.out.println("100+20+100="+b.func2(100, 20)); } }
After Class B is completed, the running result is:
100-50=150
100-80= 180
100+20+100=220
We found that an error occurred in the subtraction function that was originally running normally. The reason is that class B inadvertently rewrites the method of the parent class when naming the method, causing all the codes that run the subtraction function to call the rewritten method of class B, causing errors in the functions that originally ran normally. In this example, after referencing the function completed by base class A and replacing it with subclass B, an exception occurred. In actual programming, we often complete new functions by rewriting the parent class method. Although it is simple to write, the reusability of the entire inheritance system will be relatively poor, especially when polymorphism is used frequently, the program The chance of running errors is very high. If you have to rewrite the method of the parent class, a more common approach is: the original parent class and subclass both inherit a more popular base class, remove the original inheritance relationship, and use dependency, aggregation, combination and other relationships instead.
# Li's replacement principle is popular: Sub -class can expand the function of the parent class, but it cannot change the original function of the parent class. It contains the following 4 levels of meaning:
Subclasses can implement abstract methods of the parent class, but cannot override non-abstract methods of the parent class.
Subclasses can add their own unique methods.
When a method of a subclass overrides a method of a parent class, the preconditions of the method (that is, the formal parameters of the method) are looser than the input parameters of the parent class method.
When a method of a subclass implements an abstract method of the parent class, the postconditions of the method (ie, the return value of the method) are more stringent than those of the parent class.
It seems incredible, because we will find that we often violate the Liskov substitution principle in our own programming, but the program still runs well. So everyone will have this question, what will be the consequences if I insist on not following the Liskov substitution principle?
The consequence is: The chance of problems with the code you write will be greatly increased.
The above is the detailed content of Introduction to Richter Substitution Principle in Java. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6
Visual web development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
