1. Use metaclass to verify subclasses
Whenever we define a new class, the metaclass will run Yazheng code to ensure that the new class conforms to the specified specifications.
After the Python system has processed the class statement of the subclass, it will call the __new__
method of the metaclass. The metaclass can obtain the name, parent and attributes of the subclass and grandchild class through the __new__
method.
This eliminates the need for us to put the verification code in the __init__
method of this class and wait until the object is built before verifying.
In the following example, a subclass with less than 3 edges is defined. Once the class statement ends, the metaclass verification code will reject the class.
class ValidatePolygon(type): def __new__(meta, name, bases, class_dict): # Don't validate the abstract Polygon class if bases != (object,): if class_dict['sides'] <h3 id="Register-subclasses-with-metaclasses">2. Register subclasses with metaclasses</h3><p>Every time you inherit a subclass from a base class, the metaclass of the base class can automatically run the registration code. <br>This is useful when a 'reverse lookup' is required to establish a mapping between a simple identifier and the corresponding class. <br> Still used is that after the class statement is executed, the <code>__new__</code> method of the metaclass is automatically called. </p><pre class="brush:php;toolbar:false">import json registry = {} def register_class(target_class): registry[target_class.__name__] = target_class def deserialize(data): params = json.loads(data) name = params['class'] target_class = registry[name] return target_class(*params['args']) class Meta(type): def __new__(meta, name, bases, class_dict): cls = type.__new__(meta, name, bases, class_dict) register_class(cls) return cls class Serializable(object): def __init__(self, *args): self.args = args def serialize(self): return json.dumps({ 'class': self.__class__.__name__, 'args': self.args, }) def __repr__(self): return '%s(%s)' % ( self.__class__.__name__, ', '.join(str(x) for x in self.args)) class RegisteredSerializable(Serializable, metaclass=Meta): pass class Vector3D(RegisteredSerializable): def __init__(self, x, y, z): super().__init__(x, y, z) self.x, self.y, self.z = x, y, z v3 = Vector3D(10, -7, 3) print('Before: ', v3) data = v3.serialize() print('Serialized:', data) print('After: ', deserialize(data)) print(registry)
3. Use metaclasses to annotate class attributes
Using metaclasses is like placing a hook on the class statement. After the class statement is processed, the hook will be triggered immediately.
In the following, Filed.name
and Filed.name
are set with the help of metaclasses.
class Field(object): def __init__(self): # These will be assigned by the metaclass. self.name = None self.internal_name = None def __get__(self, instance, instance_type): if instance is None: return self return getattr(instance, self.internal_name, '') def __set__(self, instance, value): setattr(instance, self.internal_name, value) class Meta(type): def __new__(meta, name, bases, class_dict): for key, value in class_dict.items(): if isinstance(value, Field): value.name = key value.internal_name = '_' + key cls = type.__new__(meta, name, bases, class_dict) return cls class DatabaseRow(object, metaclass=Meta): pass class BetterCustomer(DatabaseRow): first_name = Field() last_name = Field() prefix = Field() suffix = Field() foo = BetterCustomer() print('Before:', repr(foo.first_name), foo.__dict__) foo.first_name = 'Euler' print('After: ', repr(foo.first_name), foo.__dict__)
The metaclass summary ends here, and I don’t fully understand it.
I hope pythoners who have a deep understanding of this can leave a message.
Code comes from:
The above is the detailed content of Detailed explanation of metaclasses and their usage in Python. For more information, please follow other related articles on the PHP Chinese website!

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
