search
HomeBackend DevelopmentPython TutorialExample of how to use Python to detect prime numbers

This article mainly introduces the method of Python prime number detection. It analyzes the related skills of Python prime number detection with examples. Friends in need can refer to it. The details are as follows:

## Factor detection:

Detection factor, time complexity O(n^(1/2))

def is_prime(n):
  if n < 2:
    return False
  for i in xrange(2, int(n**0.5+1)):
    if n%i == 0:
      return False
  return True

Fermat’s Little Theorem:

If n is a prime number and a is any positive integer less than n, then the nth power of a is congruent with a modulo n

Implementation method:

Choose a base (for example, 2 ), for a large integer p, if 2^(p-1) and 1 are not congruent modulo p, then p must not be a prime number; otherwise, p is likely to be a prime number

2**(n-1)% n is not an easy number to calculate

Rule of modular operation:

(a^b) % p = ((a % p)^b) % p
(a * b) % p = (a % p * b % p) % p

Calculate X^N(% P)

Yes

If N is an even number, then X^ N = (X*X)^[N/2];
If N is an odd number, then X^N = X*X^(N-1) = X * (X*X)^[N/2] ;

def xn_mod_p(x, n, p):
  if n == 0:
    return 1
  res = xn_mod_p((x*x)%p, n>>1, p)
  if n&1 != 0:
    res = (res*x)%p
  return res

It can also be summarized as the following algorithm. The two functions are the same

def xn_mod_p2(x, n, p):
  res = 1
  n_bin = bin(n)[2:]
  for i in range(0, len(n_bin)):
    res = res**2 % p
    if n_bin[i] == &#39;1&#39;:
      res = res * x % p
  return res

With the fast processing of modular exponentiation operation, Fermat test can be realized

Fermat test When a negative conclusion is given, it is accurate, but the positive conclusion may be wrong. It is very efficient for large integers, and the misjudgment rate decreases as the integer increases

def fermat_test_prime(n):
  if n == 1:
    return False
  if n == 2:
    return True
  res = xn_mod_p(2, n-1, n)
  return res == 1

MILLER-RABIN test

Miller-Rabin test is a widely used one at present

Quadratic detection theorem: If p is a prime number, and 0Fermat’s Little Theorem: a^(p-1) ≡ 1(mod p)
This is Miller-Rabin primality test method. Continuously extract the factor 2 in the index n-1, and express n-1 as d*2^r (where d is an odd number). Then what we need to calculate becomes the remainder of a divided by n to the d*2^r power. Therefore, a^(d * 2^(r-1)) is either equal to 1 or equal to n-1. If a^(d * 2^(r-1)) is equal to 1, the theorem continues to apply to a^(d * 2^(r-2)), and the square root is continued in this way until a^ is satisfied for a certain i (d * 2^i) mod n = n-1 or the 2 in the last exponent is used up to get a^d mod n=1 or n-1. In this way, Fermat's little theorem is strengthened into the following form:

Extract factor 2 as much as possible, and express n-1 as d*2^r. If n is a prime number, then or a^d mod n=1, Or there is a certain i such that a^(d*2^i) mod n=n-1 (0Theorem: If n is a prime number and a is a positive integer less than n, then n pairs a-based Miller test, and the result is true.

Miller test is performed k times , the error probability of treating composite numbers as prime numbers will not exceed 4^(-k) at most

def miller_rabin_witness(a, p):
  if p == 1:
    return False
  if p == 2:
    return True
  #p-1 = u*2^t 求解 u, t
  n = p - 1
  t = int(math.floor(math.log(n, 2)))
  u = 1
  while t > 0:
    u = n / 2**t
    if n % 2**t == 0 and u % 2 == 1:
      break
    t = t - 1
  b1 = b2 = xn_mod_p2(a, u, p)
  for i in range(1, t + 1):
    b2 = b1**2 % p
    if b2 == 1 and b1 != 1 and b1 != (p - 1):
      return False
    b1 = b2
  if b1 != 1:
    return False
  return True
def prime_test_miller_rabin(p, k):
  while k > 0:
    a = randint(1, p - 1)
    if not miller_rabin_witness(a, p):
      return False
    k = k - 1
  return True

The above is the detailed content of Example of how to use Python to detect prime numbers. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.