Binary Search Tree (Binary Search Tree) is an algorithm that combines the flexibility of linked list insertion with the efficiency of ordered array search. The following is the pure code for implementing various methods of BST.
Binary search tree (BST) definition
Binary sorting tree is either an empty tree, or It is a binary tree with the following properties:
If the left subtree is not empty, then the values of all nodes on the left subtree are Less than or equal to The value of its root node
If the right subtree is not empty, then right subtree The values of all nodes on are greater than or equal to the value of its root node
The left and right subtrees are also Respectively for the binary sorting tree
basic node implementation
public class BST<K extends Comparable<K>, V> { private Node root; private class Node { private K key; private V value; private Node left; private Node right; private int N; public Node(K key, V value, int N) { this.key = key; this.value = value; this.N = N; } } public int size() { return size(root); } private int size(Node x) { if (x == null) return 0; else return x.N; } }
find the key to get the value—— get
public V get(K key) { return get(root, key); } private V get(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) return root.value; else if (comp < 0) return get(root.left, key); else return get(root.right, key); }
Modify value/insert new value——put
public void put(K key, V value) { root = put(root, key, value); } private Node put(Node root, K key, V value) { if (root == null) return new Node(key, value, 1); int comp = key.compareTo(root.key); if (comp == 0) root.value = value; else if (comp < 0) root.left = put(root.left, key, value); else root.right = put(root.right, key, value); root.N = size(root.left) + size(root.right) + 1; return root; }
Maximum value/Minimum value——min/max
public K min() { return min(root).key; } private Node min(Node root) { if (root.left == null) return root; return min(root.left); }
public K max() { return max(root).key; } private Node max(Node root2) { if (root.right == null) return root; return max(root.right); }
Round up/down——floor/ceiling
public K floor(K key) { Node x = floor(root, key); if (x == null) return null; return x.key; } private Node floor(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp < 0) return floor(root.left, key); else if (comp > 0 && root.right != null && key.compareTo(min(root.right).key) >= 0) return floor(root.right, key); else return root; }
public K ceiling(K key) { Node x = ceiling(root, key); if (x == null) return null; return x.key; } private Node ceiling(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp > 0) return ceiling(root.right, key); else if (comp < 0 && root.left != null && key.compareTo(max(root.left).key) >= 0) return ceiling(root.left, key); else return root; }
Select——select
public K select(int k) { //找出BST中序号为k的键 return select(root, k); } private K select(Node root, int k) { if (root == null) return null; int comp = k - size(root.left); if (comp < 0) return select(root.left, k); else if (comp > 0) return select(root.right, k - (size(root.left) + 1)); else return root.key; }
Rank——rank
public int rank(K key) { //找出BST中键为key的序号是多少 return rank(root, key); } private int rank(Node root, K key) { if (root == null) return 0; int comp = key.compareTo(root.key); if (comp == 0) return size(root.left); else if (comp < 0) return rank(root.left, key); else return 1 + size(root.left) + rank(root.right, key); }
Delete minimum/maximum key——deleteMin/deleteMax
public void deleteMin() { root = deleteMin(root); } private Node deleteMin(Node root) { if (root.left == null) return root.right; root.left = deleteMin(root.left); root.N = size(root.left) + size(root.right) + 1; return root; }
public void deleteMax() { root = deleteMax(root); } private Node deleteMax(Node root) { if (root.right == null) return root.left; root.right = deleteMax(root.right); root.N = size(root.left) + size(root.right) + 1; return root; }
Delete any key——delete
public void delete(K key) { root = delete(root, key); } private Node delete(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) { if (root.right == null) return root = root.left; if (root.left == null) return root = root.right; Node t = root; root = min(t.right); root.left = t.left; root.right = deleteMin(t.right); } else if (comp < 0) root.left = delete(root.left, key); else root.right = delete(root.right, key); root.N = size(root.left) + size(root.right) + 1; return root; }
In-order print tree——print
public void print() { print(root); } private void print(Node root) { if (root == null) return; print(root.left); System.out.println(root.key); print(root.right); }
The above is the detailed content of Java-Binary Search Tree (BST) algorithm sample code sharing. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.