


Detailed explanation of python recursive query menu and conversion into json example code
This article mainly introduces the python recursive query menu and converts it into a json instance. It has certain reference value. Interested friends can refer to it.
I recently needed to write a menu in python, and it took me two or three days to get it done. Now I record it here, and friends who need it can learn from it.
Note: The article quotes the complete non-executable code and only excerpts the key parts of the code
Environment
Database: mysql
python:3.6
Table structure
CREATE TABLE `tb_menu` ( `id` varchar(32) NOT NULL COMMENT '唯一标识', `menu_name` varchar(40) DEFAULT NULL COMMENT '菜单名称', `menu_url` varchar(100) DEFAULT NULL COMMENT '菜单链接', `type` varchar(1) DEFAULT NULL COMMENT '类型', `parent` varchar(32) DEFAULT NULL COMMENT '父级目录id', `del_flag` varchar(1) NOT NULL DEFAULT '0' COMMENT '删除标志 0:不删除 1:已删除', `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY (`id`) USING BTREE ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='菜单表';
Python code
In the Menu object, there is a reference to the submenu list "subMenus", the type is list
Core code
def set_subMenus(id, menus): """ 根据传递过来的父菜单id,递归设置各层次父菜单的子菜单列表 :param id: 父级id :param menus: 子菜单列表 :return: 如果这个菜单没有子菜单,返回None;如果有子菜单,返回子菜单列表 """ # 记录子菜单列表 subMenus = [] # 遍历子菜单 for m in menus: if m.parent == id: subMenus.append(m) # 把子菜单的子菜单再循环一遍 for sub in subMenus: menus2 = queryByParent(sub.id) # 还有子菜单 if len(menus): sub.subMenus = set_subMenus(sub.id, menus2) # 子菜单列表不为空 if len(subMenus): return subMenus else: # 没有子菜单了 return None
Test method
def test_set_subMenus(self): # 一级菜单 rootMenus = queryByParent('') for menu in rootMenus: subMenus = queryByParent(menu.id) menu.subMenus = set_subMenus(menu.id, subMenus)
Note: The basic process is: first query the first-level menu, Then pass the id of the menu at this level and the submenu list of this level menu to the set_subMenus method to recursively set the lower-level menus of the submenu list;
supports passing the menu ID and querying the menu below. All submenus. If you pass a null character, the query starts from the root directory
In the "rootMenus" object, you can see the complete menu tree structure
Convert to Json
The ORM framework I use is: sqlalchemy. The Menu object queried directly from the database will report an error when it is converted to Json. A DTO class needs to be redefined to convert the Menu object into a Dto object.
MenuDto
class MenuDto(): def __init__(self, id, menu_name, menu_url, type, parent, subMenus): super().__init__() self.id = id self.menu_name = menu_name self.menu_url = menu_url self.type = type self.parent = parent self.subMenus = subMenus def __str__(self): return '%s(id=%s,menu_name=%s,menu_url=%s,type=%s,parent=%s)' % ( self.__class__.__name__, self.id, self.menu_name, self.menu_url, self.type, self.parent) __repr = __str__
So, the method of recursively setting submenus was redefined
def set_subMenuDtos(id, menuDtos): """ 根据传递过来的父菜单id,递归设置各层次父菜单的子菜单列表 :param id: 父级id :param menuDtos: 子菜单列表 :return: 如果这个菜单没有子菜单,返回None;如果有子菜单,返回子菜单列表 """ # 记录子菜单列表 subMenuDtos = [] # 遍历子菜单 for m in menuDtos: m.name = to_pinyin(m.menu_name) if m.parent == id: subMenuDtos.append(m) # 把子菜单的子菜单再循环一遍 for sub in subMenuDtos: menus2 = queryByParent(sub.id) menusDto2 = model_list_2_dto_list(menus2, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") # 还有子菜单 if len(menuDtos): if len(menusDto2): sub.subMenus = set_subMenuDtos(sub.id, menusDto2) else: # 没有子菜单,删除该节点 sub.__delattr__('subMenus') # 子菜单列表不为空 if len(subMenuDtos): return subMenuDtos else: # 没有子菜单了 return None
Note:
When a menu has no submenus, delete the "subMenus" attribute, otherwise a null value will appear when converting to Json
model_list_2_dto_list method can convert Menu list into MenuDto list
to_pinyin is a method to convert Chinese characters into pinyin, no need to pay attention here
View layer's method of returning Json
def get(self): param = request.args id = param['id'] # 如果id为空,查询的是从根目录开始的各级菜单 rootMenus = queryByParent(id) rootMenuDtos = model_list_2_dto_list(rootMenus, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") # 设置各级子菜单 for menu in rootMenuDtos: menu.name = to_pinyin(menu.menu_name) subMenus = queryByParent(menu.id) if len(subMenus): subMenuDtos = model_list_2_dto_list(subMenus, "MenuDto(id='', menu_name='', menu_url='', type='', parent='', subMenus='')") menu.subMenus = set_subMenuDtos(menu.id, subMenuDtos) else: menu.__delattr__('subMenus') menus_json = json.dumps(rootMenuDtos, default=lambda o: o.__dict__, sort_keys=True, allow_nan=false, skipkeys=true) # 需要转字典,否则返回的字符串会带有“\” menus_dict = json_dict(menus_json) return fullResponse(menus_dict) fullResponse from flask import jsonify def fullResponse(data='', msg='', code=0): if msg == '': return jsonify({'code': code, 'data': data}) elif data == '': return jsonify({'code': code, 'msg': msg}) else: return jsonify({'code': code, 'msg': msg, 'data': data})
Note: The meanings of json and dictionary in python are similar. When json is finally returned to the page, You need to use the json_dict method to convert to dict type first, otherwise the returned string will contain "\"
Query results
The above is the detailed content of Detailed explanation of python recursive query menu and conversion into json example code. For more information, please follow other related articles on the PHP Chinese website!

ThedifferencebetweenaforloopandawhileloopinPythonisthataforloopisusedwhenthenumberofiterationsisknowninadvance,whileawhileloopisusedwhenaconditionneedstobecheckedrepeatedlywithoutknowingthenumberofiterations.1)Forloopsareidealforiteratingoversequence

In Python, for loops are suitable for cases where the number of iterations is known, while loops are suitable for cases where the number of iterations is unknown and more control is required. 1) For loops are suitable for traversing sequences, such as lists, strings, etc., with concise and Pythonic code. 2) While loops are more appropriate when you need to control the loop according to conditions or wait for user input, but you need to pay attention to avoid infinite loops. 3) In terms of performance, the for loop is slightly faster, but the difference is usually not large. Choosing the right loop type can improve the efficiency and readability of your code.

In Python, lists can be merged through five methods: 1) Use operators, which are simple and intuitive, suitable for small lists; 2) Use extend() method to directly modify the original list, suitable for lists that need to be updated frequently; 3) Use list analytical formulas, concise and operational on elements; 4) Use itertools.chain() function to efficient memory and suitable for large data sets; 5) Use * operators and zip() function to be suitable for scenes where elements need to be paired. Each method has its specific uses and advantages and disadvantages, and the project requirements and performance should be taken into account when choosing.

Forloopsareusedwhenthenumberofiterationsisknown,whilewhileloopsareuseduntilaconditionismet.1)Forloopsareidealforsequenceslikelists,usingsyntaxlike'forfruitinfruits:print(fruit)'.2)Whileloopsaresuitableforunknowniterationcounts,e.g.,'whilecountdown>

ToconcatenatealistoflistsinPython,useextend,listcomprehensions,itertools.chain,orrecursivefunctions.1)Extendmethodisstraightforwardbutverbose.2)Listcomprehensionsareconciseandefficientforlargerdatasets.3)Itertools.chainismemory-efficientforlargedatas

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

SublimeText3 Chinese version
Chinese version, very easy to use

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 English version
Recommended: Win version, supports code prompts!
