


This article mainly introduces the method of java generating thumbnail , combined with specific examples The form analyzes various common graphics processing techniques involved in the process of generating thumbnails in Java. Friends in need can refer to the following.
This article describes the method of generating thumbnails in Java and shares it with you for your reference. The details are as follows:
package com.util; import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; /** * 生成压缩图 * */ public class ImageScale { private int width; private int height; private int scaleWidth; double support = (double) 3.0; double PI = (double) 3.14159265358978; double[] contrib; double[] normContrib; double[] tmpContrib; int startContrib, stopContrib; int nDots; int nHalfDots; /** * Start: Use Lanczos filter to replace the original algorithm for image * scaling. Lanczos improves quality of the scaled image modify by :blade */ public BufferedImage imageZoomOut(BufferedImage srcBufferImage, int w, int h) { width = srcBufferImage.getWidth(); height = srcBufferImage.getHeight(); scaleWidth = w; if (DetermineResultSize(w, h) == 1) { return srcBufferImage; } CalContrib(); BufferedImage pbOut = HorizontalFiltering(srcBufferImage, w); BufferedImage pbFinalOut = VerticalFiltering(pbOut, h); return pbFinalOut; } /** * 决定图像尺寸 */ private int DetermineResultSize(int w, int h) { double scaleH, scaleV; // update by libra double wt = w > width ? width : w; double ht = h > height ? height : h; scaleH = (double) wt / (double) width; scaleV = (double) ht / (double) height; // 需要判断一下scaleH,scaleV,不做放大操作 if (scaleH >= 1.0 && scaleV >= 1.0) { return 1; } return 0; } // end of DetermineResultSize() private double Lanczos(int i, int inWidth, int outWidth, double Support) { double x; x = (double) i * (double) outWidth / (double) inWidth; return Math.sin(x * PI) / (x * PI) * Math.sin(x * PI / Support) / (x * PI / Support); } // end of Lanczos() // // Assumption: same horizontal and vertical scaling factor // private void CalContrib() { nHalfDots = (int) ((double) width * support / (double) scaleWidth); nDots = nHalfDots * 2 + 1; try { contrib = new double[nDots]; normContrib = new double[nDots]; tmpContrib = new double[nDots]; } catch (Exception e) { System.out.println("init contrib,normContrib,tmpContrib" + e); } int center = nHalfDots; contrib[center] = 1.0; double weight = 0.0; int i = 0; for (i = 1; i <= center; i++) { contrib[center + i] = Lanczos(i, width, scaleWidth, support); weight += contrib[center + i]; } for (i = center - 1; i >= 0; i--) { contrib[i] = contrib[center * 2 - i]; } weight = weight * 2 + 1.0; for (i = 0; i <= center; i++) { normContrib[i] = contrib[i] / weight; } for (i = center + 1; i < nDots; i++) { normContrib[i] = normContrib[center * 2 - i]; } } // end of CalContrib() // 处理边缘 private void CalTempContrib(int start, int stop) { double weight = 0; int i = 0; for (i = start; i <= stop; i++) { weight += contrib[i]; } for (i = start; i <= stop; i++) { tmpContrib[i] = contrib[i] / weight; } } // end of CalTempContrib() private int GetRedValue(int rgbValue) { int temp = rgbValue & 0x00ff0000; return temp >> 16; } private int GetGreenValue(int rgbValue) { int temp = rgbValue & 0x0000ff00; return temp >> 8; } private int GetBlueValue(int rgbValue) { return rgbValue & 0x000000ff; } private int ComRGB(int redValue, int greenValue, int blueValue) { return (redValue << 16) + (greenValue << 8) + blueValue; } // 行水平滤波 private int HorizontalFilter(BufferedImage bufImg, int startX, int stopX, int start, int stop, int y, double[] pContrib) { double valueRed = 0.0; double valueGreen = 0.0; double valueBlue = 0.0; int valueRGB = 0; int i, j; for (i = startX, j = start; i <= stopX; i++, j++) { valueRGB = bufImg.getRGB(i, y); valueRed += GetRedValue(valueRGB) * pContrib[j]; valueGreen += GetGreenValue(valueRGB) * pContrib[j]; valueBlue += GetBlueValue(valueRGB) * pContrib[j]; } valueRGB = ComRGB(Clip((int) valueRed), Clip((int) valueGreen), Clip((int) valueBlue)); return valueRGB; } // end of HorizontalFilter() // 图片水平滤波 private BufferedImage HorizontalFiltering(BufferedImage bufImage, int iOutW) { int dwInW = bufImage.getWidth(); int dwInH = bufImage.getHeight(); int value = 0; BufferedImage pbOut = new BufferedImage(iOutW, dwInH, BufferedImage.TYPE_INT_RGB); for (int x = 0; x < iOutW; x++) { int startX; int start; int X = (int) (((double) x) * ((double) dwInW) / ((double) iOutW) + 0.5); int y = 0; startX = X - nHalfDots; if (startX < 0) { startX = 0; start = nHalfDots - X; } else { start = 0; } int stop; int stopX = X + nHalfDots; if (stopX > (dwInW - 1)) { stopX = dwInW - 1; stop = nHalfDots + (dwInW - 1 - X); } else { stop = nHalfDots * 2; } if (start > 0 || stop < nDots - 1) { CalTempContrib(start, stop); for (y = 0; y < dwInH; y++) { value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, tmpContrib); pbOut.setRGB(x, y, value); } } else { for (y = 0; y < dwInH; y++) { value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, normContrib); pbOut.setRGB(x, y, value); } } } return pbOut; } // end of HorizontalFiltering() private int VerticalFilter(BufferedImage pbInImage, int startY, int stopY, int start, int stop, int x, double[] pContrib) { double valueRed = 0.0; double valueGreen = 0.0; double valueBlue = 0.0; int valueRGB = 0; int i, j; for (i = startY, j = start; i <= stopY; i++, j++) { valueRGB = pbInImage.getRGB(x, i); valueRed += GetRedValue(valueRGB) * pContrib[j]; valueGreen += GetGreenValue(valueRGB) * pContrib[j]; valueBlue += GetBlueValue(valueRGB) * pContrib[j]; // System.out.println(valueRed+"->"+Clip((int)valueRed)+"<-"); // // System.out.println(valueGreen+"->"+Clip((int)valueGreen)+"<-"); // System.out.println(valueBlue+"->"+Clip((int)valueBlue)+"<-"+"-->"); } valueRGB = ComRGB(Clip((int) valueRed), Clip((int) valueGreen), Clip((int) valueBlue)); // System.out.println(valueRGB); return valueRGB; } // end of VerticalFilter() private BufferedImage VerticalFiltering(BufferedImage pbImage, int iOutH) { int iW = pbImage.getWidth(); int iH = pbImage.getHeight(); int value = 0; BufferedImage pbOut = new BufferedImage(iW, iOutH, BufferedImage.TYPE_INT_RGB); for (int y = 0; y < iOutH; y++) { int startY; int start; int Y = (int) (((double) y) * ((double) iH) / ((double) iOutH) + 0.5); startY = Y - nHalfDots; if (startY < 0) { startY = 0; start = nHalfDots - Y; } else { start = 0; } int stop; int stopY = Y + nHalfDots; if (stopY > (int) (iH - 1)) { stopY = iH - 1; stop = nHalfDots + (iH - 1 - Y); } else { stop = nHalfDots * 2; } if (start > 0 || stop < nDots - 1) { CalTempContrib(start, stop); for (int x = 0; x < iW; x++) { value = VerticalFilter(pbImage, startY, stopY, start, stop, x, tmpContrib); pbOut.setRGB(x, y, value); } } else { for (int x = 0; x < iW; x++) { value = VerticalFilter(pbImage, startY, stopY, start, stop, x, normContrib); pbOut.setRGB(x, y, value); } } } return pbOut; } // end of VerticalFiltering() int Clip(int x) { if (x < 0) return 0; if (x > 255) return 255; return x; } /** * End: Use Lanczos filter to replace the original algorithm for image * scaling. Lanczos improves quality of the scaled image modify by :blade */ public boolean scale(String source, String target, int width, int height) { File f = new File(source); try { BufferedImage bi = ImageIO.read(f); BufferedImage out = null; ImageScale scal = new ImageScale(); int _width = bi.getWidth();// add int _height = bi.getHeight();// add int[] _arr = this.getImageWidthAndHeight(_width, _height, width, height);// add // out = scal.imageZoomOut(bi, width, height); out = scal.imageZoomOut(bi, _arr[0], _arr[1]); File t = new File(target); ImageIO.write(out, "jpg", t); return true; } catch (IOException e) { e.printStackTrace(); return false; } } /** * 得到放大或者缩小后的比例 * * @param W * 图片原宽 * @param H * 原高 * @param tarW * 转换后的宽 * @param zoom * 放大还是缩小 * @return 返回宽和高的数组 */ private static int[] getImageWidthAndHeight(int orgW, int orgH, int avW, int avH) { int width = 0; int height = 0; if (orgW > 0 && orgH > 0) { if (orgW / orgH >= avW / avH) { if (orgW > avW) { width = avW; height = (orgH * avW) / orgW; } else { width = orgW; height = orgH; } System.out.println("++Widht:" + width + " Height" + height); } else { if (orgH > avH) { height = avH; width = (orgW * avH) / orgH; } else { width = orgW; height = orgH; } System.out.println("++Widht:" + width + " Height" + height); } } int[] arr = new int[2]; arr[0] = width; arr[1] = height; // long start = System.currentTimeMillis(); // int width = 0; // int height = 0; // if ((W / tarW) >= (H / tarH)) {// 宽的缩小比例大于高的 // width = tarW; // height = H * tarW / W; // System.out.println(width + " " + height); // } else { // height = tarH; // width = W * tarH / H; // System.out.println(width + " " + height); // } // int[] arr = new int[2]; // arr[0] = width; // arr[1] = height; // long end = System.currentTimeMillis(); // System.out.println("宽高处理:" + (end - start)); return arr; } public void picscale(String source, String target, int w, int h) { File f = new File(source); int width = 0; int height = 0; try { BufferedImage bi = ImageIO.read(f); int[] arr = getImageWidthAndHeight(bi.getWidth(), bi.getHeight(), w, h); width = arr[0]; height = arr[1]; BufferedImage out = null; ImageScale scal = new ImageScale(); out = scal.imageZoomOut(bi, width, height); File t = new File(target); ImageIO.write(out, "jpg", t); } catch (IOException e) { e.printStackTrace(); } } /** * *调用scale(源文件路径,保存路径,最大宽,最大高) * * */ public static void main(String[] args) { ImageScale is = new ImageScale(); long start = System.currentTimeMillis(); is.scale("D:/nie.jpg", "D:/t6.jpg", 250, 194); long end = System.currentTimeMillis(); System.out.println("时间:" + (end - start)); } }
The above is the detailed content of Detailed introduction to the method sample code of generating thumbnails in java. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
