search
HomeBackend DevelopmentPython TutorialHow to use python to operate database (mysql)

1. Basic database operations

1. If you want to allow writing Chinese in the database, you can use the following command when creating the database

create database zcl charset utf8;

2. View the students table structure

desc students;

3. View the statements that create the students table structure

show create table students;

4. Delete the database

drop database zcl;

5. Create a new field

alter table students add column nal char(64); 

PS: I hate the above " Simple explanation + code" blog. In fact, I wrote a lot of examples in the mysql terminal, but because the computer was running a video-watching software at the time, I couldn't Ctrl+C/V. I’m too lazy now haha~~

2. Connect python to the database

python3 no longer supports mysqldb. Its replacement module is PyMySQL. The example in this article is in the python3.4 environment.

1. Install the pymysql module

pip3 install pymysql

2. Connect to the database and insert the data instance

import pymysql
#生成实例,连接数据库zcl
conn = pymysql.connect(host='127.0.0.1', user='root', passwd='root', db='zcl')
#生成游标,当前实例所处状态
cur = conn.cursor()
#插入数据
reCount = cur.execute('insert into students(name, sex, age, tel, nal) values(%s, %s, %s, %s, %s)',('Jack','man',25,1351234,"CN"))
reCount = cur.execute('insert into students(name, sex, age, tel, nal) values(%s, %s, %s, %s, %s)',('Mary','female',18,1341234,"USA"))

conn.commit()  #实例提交命令

cur.close()
conn.close()
print(reCount)

View results:

mysql> select* from students;+----+------+-----+-----+-------------+------+
| id | name | sex | age | tel         | nal  |
+----+------+-----+-----+-------------+------+
|  1 | zcl  | man |  22 | 15622341234 | NULL |
|  2 | alex | man |  30 | 15622341235 | NULL |
+----+------+-----+-----+-------------+------+
2 rows in set

3. Get data

import pymysql

conn = pymysql.connect(host='127.0.0.1', user='root', passwd='root', db='zcl')
cur = conn.cursor()

reCount = cur.execute('select* from students')

res = cur.fetchone()       #获取一条数据
res2 = cur.fetchmany(3)   #获取3条数据
res3 = cur.fetchall()     #获取所有(元组格式)
print(res)
print(res2)
print(res3)
conn.commit()

cur.close()
conn.close()

Output:

(1, 'zcl', 'man', 22, '15622341234', None)
((2, 'alex', 'man', 30, '15622341235', None), (5, 'Jack', 'man', 25, '1351234', 'CN'), (6, 'Mary', 'female', 18, '1341234', 'USA'))
()

3. Transaction rollback

Transaction rollback is executed before the data is written to the database, so the transaction rollback Roll conn.rollback() before the instance submits the command conn.commit(). As long as the data is not submitted, it can be rolled back, but after the rollback, the ID will be incremented . Please look at the following example:

Insert 3 pieces of data (note transaction rollback):

import pymysql
#连接数据库zcl
conn=pymysql.connect(host='127.0.0.1', user='root', passwd='root', db='zcl')
#生成游标,当前实例所处状态
cur=conn.cursor()
#插入数据
reCount=cur.execute('insert into students(name, sex, age, tel, nal) values(%s, %s, %s, %s, %s)', ('Jack', 'man', 25, 1351234, "CN"))
reCount=cur.execute('insert into students(name, sex, age, tel, nal) values(%s,%s,%s,%s,%s)', ('Jack2', 'man', 25, 1351234, "CN"))
reCount=cur.execute('insert into students(name, sex, age, tel, nal) values(%s, %s, %s, %s, %s)', ('Mary', 'female', 18, 1341234, "USA"))

conn.rollback()      #事务回滚
conn.commit()        #实例提交命令

cur.close()
conn.close()
print(reCount)

Before the command is executed and after the command is executed (Including rollback operation) (note the ID number): The result of not executing the above code is the same as executing the above code!! Because the transaction has been rolled back, the students table will not add data!

mysql> select* from students;+----+------+--------+-----+-------------+------+
| id | name | sex    | age | tel         | nal  |
+----+------+--------+-----+-------------+------+
|  1 | zcl  | man    |  22 | 15622341234 | NULL |
|  2 | alex | man    |  30 | 15622341235 | NULL |
|  5 | Jack | man    |  25 | 1351234     | CN   |
|  6 | Mary | female |  18 | 1341234     | USA  |
+----+------+--------+-----+-------------+------+
4 rows in set

After executing the command (excluding rollback operation): Just comment the 11th line of code above.

mysql> select* from students;+----+-------+--------+-----+-------------+------+
| id | name  | sex    | age | tel         | nal  |
+----+-------+--------+-----+-------------+------+
|  1 | zcl   | man    |  22 | 15622341234 | NULL |
|  2 | alex  | man    |  30 | 15622341235 | NULL |
|  5 | Jack  | man    |  25 | 1351234     | CN   |
|  6 | Mary  | female |  18 | 1341234     | USA  |
| 10 | Jack  | man    |  25 | 1351234     | CN   |
| 11 | Jack2 | man    |  25 | 1351234     | CN   |
| 12 | Mary  | female |  18 | 1341234     | USA  |
+----+-------+--------+-----+-------------+------+
7 rows in set

Summary: Although the transaction is rolled back, the ID is still incremented and will not be canceled due to rollback, but this does not affect the consistency of the data (I don’t know the underlying principle~)

4. Insert data in batches

import pymysql
#连接数据库zcl
conn = pymysql.connect(host='127.0.0.1', user='root', passwd='root', db='zcl')
#生成游标,当前实例所处状态
cur = conn.cursor()
li = [
    ("cjy","man",18,1562234,"USA"),
    ("cjy2","man",18,1562235,"USA"),
    ("cjy3","man",18,1562235,"USA"),
    ("cjy4","man",18,1562235,"USA"),
    ("cjy5","man",18,1562235,"USA"),
]

#插入数据
reCount = cur.executemany('insert into students(name,sex,age,tel,nal) values(%s,%s,%s,%s,%s)', li)

#conn.rollback()  #事务回滚
conn.commit()  #实例提交命令

cur.close()
conn.close()
print(reCount)

Output under pycharm: 5

mysql terminal display:

mysql> select* from students;      #插入数据前+----+-------+--------+-----+-------------+------+
| id | name  | sex    | age | tel         | nal  |
+----+-------+--------+-----+-------------+------+
|  1 | zcl   | man    |  22 | 15622341234 | NULL |
|  2 | alex  | man    |  30 | 15622341235 | NULL |
|  5 | Jack  | man    |  25 | 1351234     | CN   |
|  6 | Mary  | female |  18 | 1341234     | USA  |
| 10 | Jack  | man    |  25 | 1351234     | CN   |
| 11 | Jack2 | man    |  25 | 1351234     | CN   |
| 12 | Mary  | female |  18 | 1341234     | USA  |
+----+-------+--------+-----+-------------+------+
7 rows in set


mysql> mysql> select* from students;   #插入数据后+----+-------+--------+-----+-------------+------+
| id | name  | sex    | age | tel         | nal  |
+----+-------+--------+-----+-------------+------+
|  1 | zcl   | man    |  22 | 15622341234 | NULL |
|  2 | alex  | man    |  30 | 15622341235 | NULL |
|  5 | Jack  | man    |  25 | 1351234     | CN   |
|  6 | Mary  | female |  18 | 1341234     | USA  |
| 10 | Jack  | man    |  25 | 1351234     | CN   |
| 11 | Jack2 | man    |  25 | 1351234     | CN   |
| 12 | Mary  | female |  18 | 1341234     | USA  |
| 13 | cjy   | man    |  18 | 1562234     | USA  |
| 14 | cjy2  | man    |  18 | 1562235     | USA  |
| 15 | cjy3  | man    |  18 | 1562235     | USA  |
| 16 | cjy4  | man    |  18 | 1562235     | USA  |
| 17 | cjy5  | man    |  18 | 1562235     | USA  |
+----+-------+--------+-----+-------------+------+
12 rows in set

You should summarize what you have learned in time, some things have been forgotten~_~

The above is the detailed content of How to use python to operate database (mysql). For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment