Home >Java >javaTutorial >Detailed introduction to a comprehensive summary of Java container related knowledge (picture)
Java PracticalClass Library provides a fairly complete set of containers to help us solve many specific problems. Because I am an Android developer myself, and many Android developers, including myself, are best at the Three Musketeers of ListView (RecycleView) + BaseAdapter + ArrayList. The only containers I usually use are ArrayList and HashMap. As a result, the understanding and use of the entire Java container system is still at a very shallow level. If you don't want to save yourself and think about improvements, then follow me to summarize the relevant knowledge of Java containers.
Java container classInheritanceStructure
Detailed introduction
List
Set
Queue
public interface Collection<E> extends Iterable<E> { int size(); boolean isEmpty(); boolean contains(Object o); Iterator<E> iterator(); Object[] toArray(); <T> T[] toArray(T[] a); boolean add(E e); boolean remove(Object o); boolean containsAll(java.util.Collection<?> c); boolean addAll(java.util.Collection<? extends E> c); boolean removeAll(java.util.Collection<?> c); ... //省略了其他方法 }As you can see, java defines the Collection interface and the basic operation methods of internal collections , Collection can perform operations such as adding elements to the end of the collection and deleting specified elements by default. List, Set, and Queue interfaces all inherit from Collection and define different methods.
public interface Map<K,V> { int size(); boolean containsKey(Object key); boolean containsValue(Object value); V get(Object key); V put(K key, V value); V remove(Object key); void putAll(java.util.Map<? extends K, ? extends V> m); void clear(); Set<K> keySet(); Collection<V> values(); Set<java.util.Map.Entry<K, V>> entrySet(); interface Entry<K,V> { K getKey(); V getValue(); V setValue(V value); boolean equals(Object o); int hashCode(); ... } boolean equals(Object o); int hashCode(); }Map internal interface Entryb77a8d9c3c319e50d4b02a976b347910 corresponds to the key-value pair of Map.
. The original intention of the design is: there are many kinds of container implementations, and if we want to traverse the container, we should not care about the container implementation first. Details, secondly the traversal operation should be lightweight. Iterators unify access to containers and are cheap to create. It is worth noting that iterators can only move in one direction. public interface Iterator<E> {
boolean hasNext();
E next();
default void remove() {
throw new UnsupportedOperationException("remove");
}
default void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (hasNext())
action.accept(next());
}
}
Get the iterator of the container through the iterator() method of the container
hasNext() determines whether there are still elementsListIterator is an extension of Iterator and is used for various List class accesses and supports two-way movement. CollectionListList promises to maintain elements in a specific sequence. The List interface adds a large number of methods based on Collection, making it possible to Insert and remove elements.remove() deletes the specified element
ListIterator
public interface List<E> extends Collection<E> { ... boolean add(E e); boolean remove(Object o); boolean containsAll(Collection<?> c); boolean addAll(Collection<? extends E> c); boolean addAll(int index, Collection<? extends E> c); boolean removeAll(Collection<?> c); boolean retainAll(Collection<?> c); E get(int index); E set(int index, E element); void add(int index, E element); E remove(int index); int indexOf(Object o); int lastIndexOf(Object o); java.util.List<E> subList(int fromIndex, int toIndex); ... }
##Set type
HashSet | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TreeSet | To maintain order, elements must implement the Comparable interface | |||||||||||||||||||||||||||||||||||||
LinkedHashSet | HashSet to maintain order, elements must define hashCode () | |||||||||||||||||||||||||||||||||||||
Map类型 | 使用场景 | 底层实现 |
---|---|---|
HashMap | 快速查询 | 散列表 |
LinkedHashMap | 迭代遍历具有顺序(插入顺序 or 最近最少使用) | 链表 |
TreeMap | 具有排序,唯一可以返回子树的Map(subMap()) | 红-黑树结构 |
WeakHashMap | 弱键映射,映射之外无引用的键,可以被垃圾回收 | 散列表 |
ConcurrentHashMap | 线程安全的Map | 链表 |
IdentityHashMap | 使用==代替equals()对键进行排序,专位解决特殊问题 | 链表 |
We can manually adjust HashMap to adjust performance, involving concepts such as capacity, initial capacity, size, load factor, etc. If you are interested, you can read some relevant information.
Don’t use outdated containers such as Vector Enumeration Hashtable Stack (yes, this is the original bad design of java. If you use the stack in practice, LinkedList is recommended)
I will not discuss the detailed implementation here. I will only briefly introduce the basic knowledge. If you are interested, you can read "Java Concurrent Programming" Art" book.
Copy-On-Write, referred to as COW, is an optimization strategy used in programming. The basic idea is that everyone is sharing the same content from the beginning. When someone wants to modify the content, they will actually copy the content to form a new content and then modify it. This is a kind of delayed laziness. Strategy. Starting from JDK1.5, the Java concurrency package provides two concurrent containers implemented using the CopyOnWrite mechanism, which are CopyOnWriteArrayList and CopyOnWriteArraySet. The CopyOnWrite container is very useful and can be used in many concurrent scenarios.
The CopyOnWrite container is a container that is copied on write. The popular understanding is that when we add elements to a container, we do not add them directly to the current container, but first copy the current container to create a new container, and then add elements to the new container. After adding the elements, Then point the reference of the original container to the new container. The advantage of this is that we can perform concurrent reads on the CopyOnWrite container without locking, because the current container will not add any elements. Therefore, the CopyOnWrite container is also an idea of separation of reading and writing, and reading and writing are different containers.
The CopyOnWrite container can only guarantee the final consistency of the data, but cannot guarantee the real-time consistency of the data. So if you want the written data to be read immediately, please do not use the CopyOnWrite container.
In concurrent programming, sometimes you need to use a thread-safe queue or list. There are usually two ways to achieve thread safety, one is to use blocking algorithms, and the other is to use non-blocking algorithms. The basis of non-blocking algorithm implementation is loopCAS (Compare and Swipe comparison and exchange).
The technical implementation of ConcurrentLinkedQueue is similar to CopyOnWriteArrayList and Copy, but only part of the container content rather than the entire container can be copied and modified. ConcurrentLinkedQueue consists of head node and tail node. Each node consists of a node element (item) and a reference pointing to the next node (next). The nodes are associated through next to form a queue with a linked list structure.
ConcurrentHashMap is a thread-safe and efficient HashMap. In a multi-threaded environment, using a non-thread-safe HashMap will lead to an infinite loop, and as suggested in the article, outdated containers such as HashTable are inefficient (use synchronized to ensure thread safety). ConcurrentHashMap uses lock segmentation technology to greatly improve the efficiency of concurrent use.
Lock segmentation technology: Assume that the container has multiple locks, and each lock is used to lock a part of the data in the container. When multiple threads access different data segments of the container, there is no lock between threads. Competition to improve concurrent access efficiency.
JDK7 provides 7 blocking queues. The implementation principles are all based on the production-consumption mode waiting notification mechanism.
Blocking Queue Type | Features |
---|---|
Bounded blocking queue composed of array structure | |
Bounded blocking queue composed of linked list structure | |
Support | PrioritySorted unbounded blocking queue |
Unbounded blocking queue implemented using priority queue | |
A blocking queue that does not store elements | |
An unbounded blocking queue composed of a linked list structure | |
A two-way blocking queue composed of a linked list structure |
The above is the detailed content of Detailed introduction to a comprehensive summary of Java container related knowledge (picture). For more information, please follow other related articles on the PHP Chinese website!