search
HomeJavajavaTutorialDetailed explanation of the sample code of iterator in Java collection framework

This article mainly provides you with a brief introduction to the relevant information about the iterator in the Java collection framework. It has certain reference value. Interested friends can refer to

Array data in Java can Obtained through index, what about objects? Also through index? Today we will analyze the method iteration-Iterator for obtaining collection objects in Java collections.

This article mainly analyzes the iterator part in the Java collection framework, Iterator. The source code analysis is based on JDK1.8, analysis tool, AndroidStudio. Please correct me if there are any deficiencies in the article analysis!

1. Introduction

We often use the iteration interface provided by JDK to iterate Java collections.

 Iterator iterator = list.iterator();
      while(iterator.hasNext()){
        String string = iterator.next();
        //do something
      }

The above is the basic template used by iterators. In fact, we can simply understand iteration as traversal, which is a standardized method class for traversing all objects in various containers. It always controls the Iterator and sends it the "forward", "backward", and "get current element" commands to indirectly traverse the entire collection. In Java, Iterator is an interface, which only provides basic rules for iteration:

  public interface Iterator<E> {
  //判断容器内是否还有可供访问的元素
  boolean hasNext();
  //返回迭代器刚越过的元素的引用,返回值是 E
  E next();
  //删除迭代器刚越过的元素
  default void remove() {
    throw new UnsupportedOperationException("remove");
  }
}

The above is the basic declaration of the iterator. We analyze it through specific collections.

2. Collection classification

2.1 Iterator of ArrayList

We can know by analyzing the source code of ArrayList that an internal class is first defined inside ArrayList Itr, the inner class implements the Iterator interface, as follows:

private class Itr implements Iterator<E> {
  //....
}

The inner class implements the Iterator interface, and the Iterator of ArrayList returns its inner class Itr, so we mainly look at How is Itr implemented.

  public Iterator<E> iterator() {
    return new Itr();
  }

Next we analyze the implementation of its internal class Itr.

  private class Itr implements Iterator<E> {

    protected int limit = ArrayList.this.size;

    int cursor;    // index of next element to return
    int lastRet = -1; // index of last element returned; -1 if no such
    int expectedModCount = modCount;

    public boolean hasNext() {
      return cursor < limit;
    }

    @SuppressWarnings("unchecked")
    public E next() {
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      int i = cursor;
      if (i >= limit)
        throw new NoSuchElementException();
      Object[] elementData = ArrayList.this.elementData;
      if (i >= elementData.length)
        throw new ConcurrentModificationException();
      cursor = i + 1;
      return (E) elementData[lastRet = i];
    }

    public void remove() {
      if (lastRet < 0)
        throw new IllegalStateException();
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();

      try {
        ArrayList.this.remove(lastRet);
        cursor = lastRet;
        lastRet = -1;
        expectedModCount = modCount;
        limit--;
      } catch (IndexOutOfBoundsException ex) {
        throw new ConcurrentModificationException();
      }
    }

    @Override
    @SuppressWarnings("unchecked")
    public void forEachRemaining(Consumer<? super E> consumer) {
      Objects.requireNonNull(consumer);
      final int size = ArrayList.this.size;
      int i = cursor;
      if (i >= size) {
        return;
      }
      final Object[] elementData = ArrayList.this.elementData;
      if (i >= elementData.length) {
        throw new ConcurrentModificationException();
      }
      while (i != size && modCount == expectedModCount) {
        consumer.accept((E) elementData[i++]);
      }
      // update once at end of iteration to reduce heap write traffic
      cursor = i;
      lastRet = i - 1;

      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
    }
  }

First let’s analyze the defined variable:

    protected int limit = ArrayList.this.size;

    int cursor;    // index of next element to return
    int lastRet = -1; // index of last element returned; -1 if no such
    int expectedModCount = modCount;

Among them, limit is the size of the current ArrayList, cursor represents the index of the next element, and lastRet It is the index of the previous element. If not, it returns -1. expectedModCount is of little use. We will then analyze and see how to determine whether there are subsequent elements during iteration.

  public boolean hasNext() {
      return cursor < limit;
  }

It’s very simple, it is to determine whether the index of the next element has reached the capacity of the array. If it does, it will be gone. It’s the end!

Next, let’s analyze the method of obtaining the element of the current index next

    public E next() {
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      int i = cursor;
      if (i >= limit)
        throw new NoSuchElementException();
      Object[] elementData = ArrayList.this.elementData;
      if (i >= elementData.length)
        throw new ConcurrentModificationException();
      cursor = i + 1;
      return (E) elementData[lastRet = i];
    }

Why do we need to judge modCount in the next method? That is, it is used to determine whether the collection has been modified during the traversal process. modCount is used to record the number of modifications of the ArrayList collection. It is initialized to 0. Whenever the collection is modified (modifications on the structure, internal updates are not counted), such as add, remove and other methods, modCount + 1, so if modCount remains unchanged, It means that the collection content has not been modified. This mechanism is mainly used to implement the fast failure mechanism of the ArrayList collection. Among Java collections, a large part of the collections have fast failure mechanisms. Therefore, to ensure that no errors occur during the traversal process, we should ensure that no structural modifications are made to the collection during the traversal process (except for the remove method, of course). If an abnormal error occurs, we should carefully check whether the program has errors instead of No processing is done after catch. The above code is relatively simple, it just returns the array value at the index.

For the iteration method of ArrayList, it mainly judges the value of the index and compares it with the size of the array to see if there is no data to traverse, and then obtains the values ​​​​in the array in turn. It mainly captures each collection. The underlying implementation can be iterated.

Next we will analyze the Iterator method of HashMap. Other methods are similar, as long as you grasp the underlying implementation.

2.2 HashMap’s Iterator

In HashMap, there is also a class that implements the Iterator interface. It is just an abstract class, HashIterator. Let’s take a look at its implementation. .

 private abstract class HashIterator<E> implements Iterator<E> {
    HashMapEntry<K,V> next;    // next entry to return
    int expectedModCount;  // For fast-fail
    int index;       // current slot
    HashMapEntry<K,V> current;   // current entry

    HashIterator() {
      expectedModCount = modCount;
      if (size > 0) { // advance to first entry
        HashMapEntry[] t = table;
        while (index < t.length && (next = t[index++]) == null)
          ;
      }
    }

    public final boolean hasNext() {
      return next != null;
    }

    final Entry<K,V> nextEntry() {
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      HashMapEntry<K,V> e = next;
      if (e == null)
        throw new NoSuchElementException();

      if ((next = e.next) == null) {
        HashMapEntry[] t = table;
        while (index < t.length && (next = t[index++]) == null)
          ;
      }
      current = e;
      return e;
    }

    public void remove() {
      if (current == null)
        throw new IllegalStateException();
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      Object k = current.key;
      current = null;
      HashMap.this.removeEntryForKey(k);
      expectedModCount = modCount;
    }
  }

Similarly, it also defines a variable

    HashMapEntry<K,V> next;    // next entry to return
    int expectedModCount;  // For fast-fail
    int index;       // current slot
    HashMapEntry<K,V> current;   // current entry

next represents the node of the next entry. expectedModCount is also used to determine the modified status and is used for fast collection Failure mechanism. Index represents the current index, and the node entry represented by current's current index. Let's take a look at how to determine whether there is a value for the next element.

    public final boolean hasNext() {
      return next != null;
    }

It is very simple to determine whether next is null. If it is null, it means there is no data.

Then analyze the method of obtaining elements

    final Entry<K,V> nextEntry() {
      if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
      HashMapEntry<K,V> e = next;
      if (e == null)
        throw new NoSuchElementException();
      // 一个Entry就是一个单向链表
      // 若该Entry的下一个节点不为空,就将next指向下一个节点;
      // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
      if ((next = e.next) == null) {
        HashMapEntry[] t = table;
        while (index < t.length && (next = t[index++]) == null)
          ;
      }
      current = e;
      return e;
    }

The above is the detailed content of Detailed explanation of the sample code of iterator in Java collection framework. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?How does IntelliJ IDEA identify the port number of a Spring Boot project without outputting a log?Apr 19, 2025 pm 11:45 PM

Start Spring using IntelliJIDEAUltimate version...

How to elegantly obtain entity class variable names to build database query conditions?How to elegantly obtain entity class variable names to build database query conditions?Apr 19, 2025 pm 11:42 PM

When using MyBatis-Plus or other ORM frameworks for database operations, it is often necessary to construct query conditions based on the attribute name of the entity class. If you manually every time...

How to use the Redis cache solution to efficiently realize the requirements of product ranking list?How to use the Redis cache solution to efficiently realize the requirements of product ranking list?Apr 19, 2025 pm 11:36 PM

How does the Redis caching solution realize the requirements of product ranking list? During the development process, we often need to deal with the requirements of rankings, such as displaying a...

How to safely convert Java objects to arrays?How to safely convert Java objects to arrays?Apr 19, 2025 pm 11:33 PM

Conversion of Java Objects and Arrays: In-depth discussion of the risks and correct methods of cast type conversion Many Java beginners will encounter the conversion of an object into an array...

How do I convert names to numbers to implement sorting and maintain consistency in groups?How do I convert names to numbers to implement sorting and maintain consistency in groups?Apr 19, 2025 pm 11:30 PM

Solutions to convert names to numbers to implement sorting In many application scenarios, users may need to sort in groups, especially in one...

E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?E-commerce platform SKU and SPU database design: How to take into account both user-defined attributes and attributeless products?Apr 19, 2025 pm 11:27 PM

Detailed explanation of the design of SKU and SPU tables on e-commerce platforms This article will discuss the database design issues of SKU and SPU in e-commerce platforms, especially how to deal with user-defined sales...

How to set the default run configuration list of SpringBoot projects in Idea for team members to share?How to set the default run configuration list of SpringBoot projects in Idea for team members to share?Apr 19, 2025 pm 11:24 PM

How to set the SpringBoot project default run configuration list in Idea using IntelliJ...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.