search
HomeJavajavaTutorialWhich is faster, Java heap or local memory?

One benefit of using Java is that you don't have to manage memory allocation and release yourself. When you instantiate an object using the new keyword, the memory it requires is automatically allocated in the Java heap. The heap is managed by the garbage collector, and it reclaims memory when objects go out of scope. But there is a 'backdoor' in the JVM that allows you to access native memory that is not in the heap. In this article, I will show you how an object is stored in memory as a continuous bytecode, and tell you how these bytes should be stored, whether in the Java heap or in local memory . Finally I will give some conclusions on how to access memory from the JVM faster: using the Java heap or local memory.

Use Unsafe to allocate and deallocate memory

sun.misc.Unsafe allows you to allocate and deallocate local memory in Java, just like malloc and free in C language. The memory allocated through it is not in the Java heap and is not managed by the garbage collector, so you need to be responsible for releasing and recycling it yourself when it is used up. The following is a tool class I wrote that uses Unsafe to manage local memory:

public class Direct implements Memory {

    private static Unsafe unsafe;
    private static boolean AVAILABLE = false;

    static {
        try {
            Field field = Unsafe.class.getDeclaredField("theUnsafe");
            field.setAccessible(true);
            unsafe = (Unsafe)field.get(null);
            AVAILABLE = true;
        } catch(Exception e) {
            // NOOP: throw exception later when allocating memory
        }
    }

    public static boolean isAvailable() {
        return AVAILABLE;
    }

    private static Direct INSTANCE = null;

    public static Memory getInstance() {
        if (INSTANCE == null) {
            INSTANCE = new Direct();
        }
        return INSTANCE;
    }

    private Direct() {

    }

    @Override
    public long alloc(long size) {
        if (!AVAILABLE) {
            throw new IllegalStateException("sun.misc.Unsafe is not accessible!");
        }
        return unsafe.allocateMemory(size);
    }

    @Override
    public void free(long address) {
        unsafe.freeMemory(address);
    }

    @Override
    public final long getLong(long address) {
        return unsafe.getLong(address);
    }

    @Override
    public final void putLong(long address, long value) {
        unsafe.putLong(address, value);
    }

    @Override
    public final int getInt(long address) {
        return unsafe.getInt(address);
    }

    @Override
    public final void putInt(long address, int value) {
        unsafe.putInt(address, value);
    }
}

Allocate an object in local memory

Let us convert the following Java The object is placed in local memory:

public class SomeObject {

    private long someLong;
    private int someInt;

    public long getSomeLong() {
        return someLong;
    }
    public void setSomeLong(long someLong) {
        this.someLong = someLong;
    }
    public int getSomeInt() {
        return someInt;
    }
    public void setSomeInt(int someInt) {
        this.someInt = someInt;
    }
}

All we have done is to put the properties of the object into Memory:

public class SomeMemoryObject {

    private final static int someLong_OFFSET = 0;
    private final static int someInt_OFFSET = 8;
    private final static int SIZE = 8 + 4; // one long + one int

    private long address;
    private final Memory memory;

    public SomeMemoryObject(Memory memory) {
        this.memory = memory;
        this.address = memory.alloc(SIZE);
    }

    @Override
    public void finalize() {
        memory.free(address);
    }

    public final void setSomeLong(long someLong) {
        memory.putLong(address + someLong_OFFSET, someLong);
    }

    public final long getSomeLong() {
        return memory.getLong(address + someLong_OFFSET);
    }

    public final void setSomeInt(int someInt) {
        memory.putInt(address + someInt_OFFSET, someInt);
    }

    public final int getSomeInt() {
        return memory.getInt(address + someInt_OFFSET);
    }
}

Now Let's take a look at the read and write performance of two arrays: one containing millions of SomeObject objects, the other containing millions of SomeMemoryObject objects .

// with JIT:
Number of Objects:  1,000     1,000,000     10,000,000    60,000,000
Heap Avg Write:      107         2.30          2.51         2.58       
Native Avg Write:    305         6.65          5.94         5.26
Heap Avg Read:       61          0.31          0.28         0.28
Native Avg Read:     309         3.50          2.96         2.16

// without JIT: (-Xint)
Number of Objects:  1,000     1,000,000     10,000,000    60,000,000
Heap Avg Write:      104         107           105         102       
Native Avg Write:    292         293           300         297
Heap Avg Read:       59          63            60          58
Native Avg Read:     297         298           302         299

Conclusion: Reading local memory across the JVM barrier will be about 10 times slower than reading memory in the Java heap directly, and writing operations will be about 2 times slower. However, it should be noted that since the local memory space managed by each SomeMemoryObject object is independent, the read and write operations are not continuous. Then let's compare the performance of reading and writing continuous memory space.

Accessing a large piece of continuous memory space

This test contains the same test data in the heap and in a large piece of continuous local memory. Then we do multiple read and write operations to see which one is faster. And we will do some random address access to compare the results.

// with JIT and sequential access:
Number of Objects:  1,000     1,000,000     1,000,000,000
Heap Avg Write:      12          0.34           0.35 
Native Avg Write:    102         0.71           0.69 
Heap Avg Read:       12          0.29           0.28 
Native Avg Read:     110         0.32           0.32

// without JIT and sequential access: (-Xint)
Number of Objects:  1,000     1,000,000      10,000,000
Heap Avg Write:      8           8              8
Native Avg Write:    91          92             94
Heap Avg Read:       10          10             10
Native Avg Read:     91          90             94

// with JIT and random access:
Number of Objects:  1,000     1,000,000     1,000,000,000
Heap Avg Write:      61          1.01           1.12
Native Avg Write:    151         0.89           0.90 
Heap Avg Read:       59          0.89           0.92 
Native Avg Read:     156         0.78           0.84

// without JIT and random access: (-Xint)
Number of Objects:  1,000     1,000,000      10,000,000
Heap Avg Write:      55          55              55
Native Avg Write:    141         142             140
Heap Avg Read:       55          55              55 
Native Avg Read:     138         140             138

Conclusion:When doing continuous access, Java heap memory is usually faster than local memory. For random address access, heap memory is only slightly slower than local memory, and when targeting large blocks of contiguous data, it is not much slower.

Final conclusion

Using local memory in Java has its meaning, for example when you want to operate on large blocks of data (>2G) and don't want to use the garbage collector (GC) when. From a latency perspective, direct access to local memory is no faster than accessing the Java heap. This conclusion actually makes sense, because there is definitely overhead in crossing the JVM barrier. This conclusion also applies to ByteBuffer using local or heap. The speed improvement of using local ByteBuffer is not to access these memories, but that it can directly operate with the local IO provided by the operating system

The above is the detailed content of Which is faster, Java heap or local memory?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
带你搞懂Java结构化数据处理开源库SPL带你搞懂Java结构化数据处理开源库SPLMay 24, 2022 pm 01:34 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

Java集合框架之PriorityQueue优先级队列Java集合框架之PriorityQueue优先级队列Jun 09, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

完全掌握Java锁(图文解析)完全掌握Java锁(图文解析)Jun 14, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

一起聊聊Java多线程之线程安全问题一起聊聊Java多线程之线程安全问题Apr 21, 2022 pm 06:17 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

Java基础归纳之枚举Java基础归纳之枚举May 26, 2022 am 11:50 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

详细解析Java的this和super关键字详细解析Java的this和super关键字Apr 30, 2022 am 09:00 AM

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

Java数据结构之AVL树详解Java数据结构之AVL树详解Jun 01, 2022 am 11:39 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

java中封装是什么java中封装是什么May 16, 2019 pm 06:08 PM

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),