search
HomeBackend DevelopmentPython TutorialDetailed explanation of the method of crawling to the Encyclopedia of Embarrassing Things using Python's crawler technology

It was my first time to learn crawler technology. I read a joke on Zhihu about how to crawl to the Encyclopedia of Embarrassing Things, so I decided to make one myself.

Achieve goals: 1. Crawling to the jokes in the Encyclopedia of Embarrassing Things

2. Crawling one paragraph every time and crawling to the next page every time you press Enter

Technical implementation: Based on the implementation of python, using the Requests library, re library, and the BeautifulSoup method of the bs4 library to implement

Main content: First, we need to clarify the ideas for crawling implementation , let’s build the main framework. In the first step, we first write a method to obtain web pages using the Requests library. In the second step, we use the BeautifulSoup method of the bs4 library to analyze the obtained web page information and use regular expressions to match relevant paragraph information. . The third step is to print out the obtained information. We all execute the above methods through a main function .

First, import the relevant libraries

import requests
from bs4 import BeautifulSoup
import bs4
import  re

Second, first obtain the web page information

def getHTMLText(url):
    try:
        user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
        headers = {'User-Agent': user_agent}
        r = requests.get(url,headers = headers)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        return r.text
    except:
        return ""

Third, put the information into r and then analyze it

soup = BeautifulSoup(html,"html.parser")

What we need is the content and publisher of the joke. By viewing the source code on the web page, we know that the publisher of the joke is:

'p', attrs={'class': 'content'}中

The content of the joke is in

'p', attrs={'class': 'author clearfix'}中

, so we pass bs4 Library method to extract the specific content of these two tags

def fillUnivlist(lis,li,html,count):
    soup = BeautifulSoup(html,"html.parser")
    try:
        a = soup.find_all('p', attrs={'class': 'content'})
        ll = soup.find_all('p', attrs={'class': 'author clearfix'})

Then obtain the information through specific regular expressions

for sp in a:
    patten = re.compile(r'<span>(.*?)</span>',re.S)
    Info = re.findall(patten,str(sp))
    lis.append(Info)
    count = count + 1
for mc in ll:
    namePatten = re.compile(r'<h2 id="">(.*?)</h2>', re.S)
    d = re.findall(namePatten, str(mc))
    li.append(d)

What we need to pay attention to is the return of find_all and re’s findall method They are all a list. When using regular expressions, we only roughly extract and do not remove the line breaks in the tags

Next, we only need to combine the contents of the two lists and output them

def printUnivlist(lis,li,count):
    for i in range(count):
        a = li[i][0]
        b = lis[i][0]
        print ("%s:"%a+"%s"%b)

Then I make an input control function, enter Q to return an error, exit, enter Enter to return correct, and load the next page of paragraphs

def input_enter():
    input1 = input()
    if input1 == 'Q':
        return False
    else:
        return True

We realize the input control through the main function. If If the control function returns an error, the output will not be performed. If the return value is correct, the output will continue. We load the next page through a for loop.

def main():
    passage = 0
    enable = True
    for i in range(20):
        mc = input_enter()
        if mc==True:
            lit = []
            li = []
            count = 0
            passage = passage + 1
            qbpassage = passage
            print(qbpassage)
            url = 'http://www.qiushibaike.com/8hr/page/' + str(qbpassage) + '/?s=4966318'
            a = getHTMLText(url)
            fillUnivlist(lit, li, a, count)
            number = fillUnivlist(lit, li, a, count)
            printUnivlist(lit, li, number)
        else:
            break

Here we need to note that every for loop will refresh lis[] and li[], so that the paragraph content of the webpage can be correctly output every time

Here is the source code :

import requests
from bs4 import BeautifulSoup
import bs4
import  re
def getHTMLText(url):
    try:
        user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
        headers = {'User-Agent': user_agent}
        r = requests.get(url,headers = headers)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        return r.text
    except:
        return ""
def fillUnivlist(lis,li,html,count):
    soup = BeautifulSoup(html,"html.parser")
    try:
        a = soup.find_all('p', attrs={'class': 'content'})
        ll = soup.find_all('p', attrs={'class': 'author clearfix'})
        for sp in a:
            patten = re.compile(r'(.*?)',re.S)
            Info = re.findall(patten,str(sp))
            lis.append(Info)
            count = count + 1
        for mc in ll:
            namePatten = re.compile(r'

(.*?)

', re.S)             d = re.findall(namePatten, str(mc))             li.append(d)     except:         return ""     return count def printUnivlist(lis,li,count):     for i in range(count):         a = li[i][0]         b = lis[i][0]         print ("%s:"%a+"%s"%b) def input_enter():     input1 = input()     if input1 == 'Q':         return False     else:         return True def main():     passage = 0     enable = True     for i in range(20):         mc = input_enter()         if mc==True:             lit = []             li = []             count = 0             passage = passage + 1             qbpassage = passage             print(qbpassage)             url = 'http://www.qiushibaike.com/8hr/page/' + str(qbpassage) + '/?s=4966318'             a = getHTMLText(url)             fillUnivlist(lit, li, a, count)             number = fillUnivlist(lit, li, a, count)             printUnivlist(lit, li, number)         else:             break main()

This is my first time doing it and there are still many areas that can be optimized. I hope everyone can point it out.

The above is the detailed content of Detailed explanation of the method of crawling to the Encyclopedia of Embarrassing Things using Python's crawler technology. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor