search
HomeBackend DevelopmentPython TutorialSharing tips on using efficient file I/O operation processing in Python

How to read and write text files?

Actual case

The encoding format of a certain text file has been changed (such as UTF-8, GBK, BIG5), how about python2.x and python3.x respectively? Read these files?

Solution

Pay attention to distinguish the difference between python2 and python3

The semantics of string has changed:

python2 python3
str bytes
unicode str


python2.x encodes unicode before writing the file and decodes the binary string after reading the file

>>> f = open('py2.txt', 'w')
>>> s = u'你好'
>>> f.write(s.encode('gbk'))
>>> f.close()
>>> f = open('py2.txt', 'r')
>>> t = f.read()
>>> print t.decode('gbk')

Hello

open function in python3.x Specify the text mode of t, encoding specifies the encoding format

>>> f = open('py3.txt', 'wt', encoding='utf-8')
>>> f.write('你好')
2
>>> f.close()
>>> f = open('py3.txt', 'rt', encoding='utf-8')
>>> s = f.read()
>>> s
'你好'

How to set the file buffer

Actual case

When writing the file content to the hard disk device, use System calls, this type of I/O operations take a long time. In order to reduce the number of I/O operations, files usually use buffers (only when there is enough data to make system calls), the file's cacheBehavior, divided into full buffering, line buffering, and no buffering.

How to set the buffer text of fileobject in Python?

Solution

Full buffering: The buffering of the open function is set to an integer greater than 1n, n is the buffer size

>>> f = open('demo2.txt', 'w', buffering=2048)
>>> f.write('+' * 1024)
>>> f.write('+' * 1023)
# 大于2048的时候就写入文件
>>> f.write('-' * 2)
>>> f.close()

Line buffering: The buffering of the open function is set to 1

>>> f = open('demo3.txt', 'w', buffering=1)
>>> f.write('abcd')
>>> f.write('1234')
# 只要加上\n就写入文件中
>>> f.write('\n')
>>> f.close()

No buffering: The buffering of the open function is set to 0

>>> f = open('demo4.txt', 'w', buffering=0)
>>> f.write('a')
>>> f.write('b')
>>> f.close()

How to map files to memory?

Actual case

When accessing certain binary files, it is hoped that the file can be mapped into memory to achieve random access. (framebuffer device file)

Some embedded device, the registers are addressed to the memory address space, we can map a certain range of /dev/mem to access these registers

If multiple processes are mapped to the same file, process communication can also be achieved

Solution

Use the mmap() function of the mmap module in the standard library, which requires an open file descriptor as a parameter

Create The following file

[root@pythontab.com ~]# dd if=/dev/zero of=demo.bin bs=1024 count=1024
1024+0 records in
1024+0 records out
1048576 bytes (1.0 MB) copied, 0.00380084 s, 276 MB/s
# 以十六进制格式查看文件内容
[root@pythontab.com ~]# od -x demo.bin 
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
4000000
>>> import mmap
>>> import os
>>> f = open('demo.bin','r+b')
# 获取文件描述符
>>> f.fileno()
3
>>> m = mmap.mmap(f.fileno(),0,access=mmap.ACCESS_WRITE)
>>> type(m)
<type>
# 可以通过索引获取内容
>>> m[0]
'\x00'
>>> m[10:20]
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
# 修改内容
>>> m[0] = '\x88'</type>

View

[root@pythontab.com ~]# od -x demo.bin 
0000000 0088 0000 0000 0000 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
*
4000000

Modify slice

>>> m[4:8] = '\xff' * 4

View

[root@pythontab.com ~]# od -x demo.bin 
0000000 0088 0000 ffff ffff 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
*
4000000
>>> m = mmap.mmap(f.fileno(),mmap.PAGESIZE * 8,access=mmap.ACCESS_WRITE,offset=mmap.PAGESIZE * 4) 
>>> m[:0x1000] = '\xaa' * 0x1000

View

[root@pythontab.com ~]# od -x demo.bin 
0000000 0088 0000 ffff ffff 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
*
0040000 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
*
0050000 0000 0000 0000 0000 0000 0000 0000 0000
*
4000000

How to access the status of the file ?

Actual case

In some projects, we need to get the file status, for example:

The type of file (ordinary file, directory, symbolic link, device file...)

File access rights

The last access/modification/node status change time of the file

The size of the ordinary file

…..

Solution

The current directory has the following files

[root@pythontab.com 2017]# ll
total 4
drwxr-xr-x 2 root root 4096 Sep 16 11:35 dirs
-rw-r--r-- 1 root root 0 Sep 16 11:35 files
lrwxrwxrwx 1 root root 37 Sep 16 11:36 lockfile -> /tmp/qtsingleapp-aegisG-46d2-lockfile

System call

Three system calls stat under the os module in the standard library , fstat, lstat Get the file status

>>> import os
>>> s = os.stat('files')
>>> s
posix.stat_result(st_mode=33188, st_ino=267646, st_dev=51713L, st_nlink=1, st_uid=0, st_gid=0, st_size=0, st_atime=1486197100, st_mtime=1486197100, st_ctime=1486197100)
>>> s.st_mode
33188
>>> import stat
# stat有很多S_IS..方法来判断文件的类型
>>> stat.S_ISDIR(s.st_mode)
False
# 普通文件
>>> stat.S_ISREG(s.st_mode)
True

Get the access permission of the file, it is true as long as it is greater than 0

>>> s.st_mode & stat.S_IRUSR
256
>>> s.st_mode & stat.S_IXGRP
0
>>> s.st_mode & stat.S_IXOTH
0

Get the modification time of the file

# 访问时间
>>> s.st_atime
1486197100.3384446
# 修改时间
>>> s.st_mtime
1486197100.3384446
# 状态更新时间
>>> s.st_ctime
1486197100.3384446

Get the TimestampConvert

>>> import time
>>> time.localtime(s.st_atime)
time.struct_time(tm_year=2016, tm_mon=9, tm_mday=16, tm_hour=11, tm_min=35, tm_sec=47, tm_wday=4, tm_yday=260, tm_isdst=0)

Get the size of an ordinary file

>>> s.st_size
0

Shortcut function

Some functions under os.path in the standard library are more convenient to use Concise

File type judgment

>>> os.path.isdir('dirs') 
True
>>> os.path.islink('lockfile')
True
>>> os.path.isfile('files') 
True

File three times

>>> os.path.getatime('files')
1486197100.3384445
>>> os.path.getmtime('files')
1486197100.3384445
>>> os.path.getctime('files')
1486197100.3384445

Get file size

>>> os.path.getsize('files') 
0

How to use temporary files?

Actual Case

In a certain project, we collect data from sensors. After each 1G of data is collected, we do data analysis. In the end, only the analysis results are saved. If such large temporary data is permanent, Memory will consume a lot of memory resources. We can use temporary files to store these temporary data (external storage)

Temporary files do not need to be named and will be deleted automatically after closing

Solution

Use TemporaryFile, NamedTemporaryFile under tempfile in the standard library

>>> from tempfile import TemporaryFile, NamedTemporaryFile
# 访问的时候只能通过对象f来进行访问
>>> f = TemporaryFile()
>>> f.write('abcdef' * 100000)
# 访问临时数据
>>> f.seek(0)
>>> f.read(100)
'abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcd'
>>> ntf = NamedTemporaryFile()
# 如果要让每次创建NamedTemporaryFile()对象时不删除文件,可以设置NamedTemporaryFile(delete=False)
>>> ntf.name
# 返回当前临时文件在文件系统中的路径
'/tmp/tmppNvNA6'

The above is the detailed content of Sharing tips on using efficient file I/O operation processing in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment