HashMap is a hash table, and the stored content is a key-value mapping. HashMap inherits from AbstractMap and implements the Map, Cloneable, and Serializable interfaces.
(1) HashMap is not thread-safe, and the key-value can be null and is unordered.
(2) The initial size of HashMap is 16, the maximum size is 2 to the 30th power, and the default loading factor is 0.75.
(3) The initial capacity is just the capacity of the hash table when it is created, and the load factor is a measure of how full the hash table can be before its capacity is automatically increased. When the number of entries in the hash table exceeds the product of the load factor and the current capacity, the hash table needs to be rehashed (rebuilding the internal data structure)
Integer Iterator =map.entrySet().iterator()(iterator.hasNext()) { Map.Entry entry=(Map.Entry)iterator.next()key=(String)enrty.getKey()value=(Integer)entry.getValue()}
=Integer =Inerator =map.keySet().iterator()(iterator.hasNext()) { key=(String)iterator.next()value=(Integer)map.get(key)}(3 ) Traverse the values of HashMap: The first step is to obtain the value set based on value, and iteratively traverse the value set
=Collection =map.values()Iterator = .iterator()(iterator.hasNext()) { value=(Integer)iterator.next()}
() Object () (Object key) (Object value) Set<entry>> () (Object key) () Set () (keyvalue) (Map ? > map) (Object key) () Collection ()</entry>HashMap sample code:
public class Hello { public void testHashMapAPIs() { Random r = new Random(); HashMap<string> map = new HashMap(); map.put("one", r.nextInt(10)); map.put("two", r.nextInt(10)); map.put("three", r.nextInt(10)); System.out.println("map:"+map ); Iterator iter = map.entrySet().iterator(); while(iter.hasNext()) { Map.Entry entry = (Map.Entry)iter.next(); System.out.println("key : "+ entry.getKey() +",value:"+entry.getValue()); } System.out.println("size:"+map.size()); System.out.println("contains key two : "+map.containsKey("two")); System.out.println("contains key five : "+map.containsKey("five")); System.out.println("contains value 0 : "+map.containsValue(new Integer(0))); map.remove("three"); System.out.println("map:"+map ); map.clear(); System.out.println((map.isEmpty()?"map is empty":"map is not empty") ); } public static void main(String[] args) { Hello hello=new Hello(); hello.testHashMapAPIs(); } }</string>
map:{one=3, two=9, three=9} key : one,value:3 key : two,value:9 key : three,value:9 size:3 contains key two : true contains key five : false contains value 0 : false map:{one=3, two=9} map is empty
public class HashMap<k> extends AbstractMap<k> implements Map<k>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; static final int DEFAULT_INITIAL_CAPACITY = 1 implements Map.Entry<k> { final int hash; final K key; V value; Node<k> next; Node(int hash, K key, V value, Node<k> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry, ?> e = (Map.Entry, ?>) o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } //计算Hash static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } //返回类 static Class> comparableClassFor(Object x) { if (x instanceof Comparable) { Class> c; Type[] ts, as; Type t; ParameterizedType p; if ((c = x.getClass()) == String.class) // bypass checks return c; if ((ts = c.getGenericInterfaces()) != null) { for (int i = 0; i kc, Object k, Object x) { return (x == null || x.getClass() != kc ? 0 : ((Comparable)k).compareTo(x)); } static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n = MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } transient Node<k>[] table;//数据表 transient Set<map.entry>> entrySet;//实体集合 transient int size;//大小 transient int modCount;//用来实现fail-fast int threshold;//值为capacity * load factor final float loadFactor;//hashtable的加载因子 //构造函数,初始化容量大小和加载因子 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } final void putMapEntries(Map extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { if (table == null) { // pre-size float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft threshold) threshold = tableSizeFor(t); } else if (s > threshold) resize(); for (Map.Entry extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } //返回大小 public int size() { return size; } //判断是否为空 public boolean isEmpty() { return size == 0; } //通过key获得值 public V get(Object key) { Node<k> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } //通过hash和key获得节点 final Node<k> getNode(int hash, Object key) { Node<k>[] tab; Node<k> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) return ((TreeNode<k>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } //是否含有某个key public boolean containsKey(Object key) { return getNode(hash(key), key) != null; } //如果之前存在key的value值,则替换掉 public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<k>[] tab; Node<k> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<k> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<k>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } //改变大小 final Node<k>[] resize() { Node<k>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap = DEFAULT_INITIAL_CAPACITY) newThr = oldThr 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap [] newTab = (Node<k>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<k>)e).split(this, newTab, j, oldCap); else { // preserve order Node<k> loHead = null, loTail = null; Node<k> hiHead = null, hiTail = null; Node<k> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } final void treeifyBin(Node<k>[] tab, int hash) { int n, index; Node<k> e; if (tab == null || (n = tab.length) hd = null, tl = null; do { TreeNode<k> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } } public void putAll(Map extends K, ? extends V> m) { putMapEntries(m, true); } public V remove(Object key) { Node<k> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } final Node<k> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<k>[] tab; Node<k> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<k> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) node = ((TreeNode<k>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<k>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; } public void clear() { Node<k>[] tab; modCount++; if ((tab = table) != null && size > 0) { size = 0; for (int i = 0; i [] tab; V v; if ((tab = table) != null && size > 0) { for (int i = 0; i e = tab[i]; e != null; e = e.next) { if ((v = e.value) == value || (value != null && value.equals(v))) return true; } } } return false; } public Set<k> keySet() { Set<k> ks; return (ks = keySet) == null ? (keySet = new KeySet()) : ks; } final class KeySet extends AbstractSet<k> { public final int size() { return size; } public final void clear() { HashMap.this.clear(); } public final Iterator<k> iterator() { return new KeyIterator(); } public final boolean contains(Object o) { return containsKey(o); } public final boolean remove(Object key) { return removeNode(hash(key), key, null, false, true) != null; } public final Spliterator<k> spliterator() { return new KeySpliterator(HashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer super K> action) { Node<k>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i e = tab[i]; e != null; e = e.next) action.accept(e.key); } if (modCount != mc) throw new ConcurrentModificationException(); } } } public Collection<v> values() { Collection<v> vs; return (vs = values) == null ? (values = new Values()) : vs; } final class Values extends AbstractCollection<v> { public final int size() { return size; } public final void clear() { HashMap.this.clear(); } public final Iterator<v> iterator() { return new ValueIterator(); } public final boolean contains(Object o) { return containsValue(o); } public final Spliterator<v> spliterator() { return new ValueSpliterator(HashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer super V> action) { Node<k>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i e = tab[i]; e != null; e = e.next) action.accept(e.value); } if (modCount != mc) throw new ConcurrentModificationException(); } } } public Set<map.entry>> entrySet() { Set<map.entry>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; } final class EntrySet extends AbstractSet<map.entry>> { public final int size() { return size; } public final void clear() { HashMap.this.clear(); } public final Iterator<map.entry>> iterator() { return new EntryIterator(); } public final boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry,?> e = (Map.Entry,?>) o; Object key = e.getKey(); Node<k> candidate = getNode(hash(key), key); return candidate != null && candidate.equals(e); } public final boolean remove(Object o) { if (o instanceof Map.Entry) { Map.Entry,?> e = (Map.Entry,?>) o; Object key = e.getKey(); Object value = e.getValue(); return removeNode(hash(key), key, value, true, true) != null; } return false; } public final Spliterator<map.entry>> spliterator() { return new EntrySpliterator(HashMap.this, 0, -1, 0, 0); } public final void forEach(Consumer super Map.Entry<k>> action) { Node<k>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i e = tab[i]; e != null; e = e.next) action.accept(e); } if (modCount != mc) throw new ConcurrentModificationException(); } } } // Overrides of JDK8 Map extension methods @Override public V getOrDefault(Object key, V defaultValue) { Node<k> e; return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; } @Override public V putIfAbsent(K key, V value) { return putVal(hash(key), key, value, true, true); } @Override public boolean remove(Object key, Object value) { return removeNode(hash(key), key, value, true, true) != null; } @Override public boolean replace(K key, V oldValue, V newValue) { Node<k> e; V v; if ((e = getNode(hash(key), key)) != null && ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) { e.value = newValue; afterNodeAccess(e); return true; } return false; } @Override public V replace(K key, V value) { Node<k> e; if ((e = getNode(hash(key), key)) != null) { V oldValue = e.value; e.value = value; afterNodeAccess(e); return oldValue; } return null; } @Override public V computeIfAbsent(K key, Function super K, ? extends V> mappingFunction) { if (mappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<k>[] tab; Node<k> first; int n, i; int binCount = 0; TreeNode<k> t = null; Node<k> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) old = (t = (TreeNode<k>)first).getTreeNode(hash, key); else { Node<k> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } V oldValue; if (old != null && (oldValue = old.value) != null) { afterNodeAccess(old); return oldValue; } } V v = mappingFunction.apply(key); if (v == null) { return null; } else if (old != null) { old.value = v; afterNodeAccess(old); return v; } else if (t != null) t.putTreeVal(this, tab, hash, key, v); else { tab[i] = newNode(hash, key, v, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); return v; } public V computeIfPresent(K key, BiFunction super K, ? super V, ? extends V> remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); Node<k> e; V oldValue; int hash = hash(key); if ((e = getNode(hash, key)) != null && (oldValue = e.value) != null) { V v = remappingFunction.apply(key, oldValue); if (v != null) { e.value = v; afterNodeAccess(e); return v; } else removeNode(hash, key, null, false, true); } return null; } @Override public V compute(K key, BiFunction super K, ? super V, ? extends V> remappingFunction) { if (remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<k>[] tab; Node<k> first; int n, i; int binCount = 0; TreeNode<k> t = null; Node<k> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) old = (t = (TreeNode<k>)first).getTreeNode(hash, key); else { Node<k> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } } V oldValue = (old == null) ? null : old.value; V v = remappingFunction.apply(key, oldValue); if (old != null) { if (v != null) { old.value = v; afterNodeAccess(old); } else removeNode(hash, key, null, false, true); } else if (v != null) { if (t != null) t.putTreeVal(this, tab, hash, key, v); else { tab[i] = newNode(hash, key, v, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return v; } @Override public V merge(K key, V value, BiFunction super V, ? super V, ? extends V> remappingFunction) { if (value == null) throw new NullPointerException(); if (remappingFunction == null) throw new NullPointerException(); int hash = hash(key); Node<k>[] tab; Node<k> first; int n, i; int binCount = 0; TreeNode<k> t = null; Node<k> old = null; if (size > threshold || (tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((first = tab[i = (n - 1) & hash]) != null) { if (first instanceof TreeNode) old = (t = (TreeNode<k>)first).getTreeNode(hash, key); else { Node<k> e = first; K k; do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { old = e; break; } ++binCount; } while ((e = e.next) != null); } } if (old != null) { V v; if (old.value != null) v = remappingFunction.apply(old.value, value); else v = value; if (v != null) { old.value = v; afterNodeAccess(old); } else removeNode(hash, key, null, false, true); return v; } if (value != null) { if (t != null) t.putTreeVal(this, tab, hash, key, value); else { tab[i] = newNode(hash, key, value, first); if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); } ++modCount; ++size; afterNodeInsertion(true); } return value; } @Override public void forEach(BiConsumer super K, ? super V> action) { Node<k>[] tab; if (action == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i e = tab[i]; e != null; e = e.next) action.accept(e.key, e.value); } if (modCount != mc) throw new ConcurrentModificationException(); } } @Override public void replaceAll(BiFunction super K, ? super V, ? extends V> function) { Node<k>[] tab; if (function == null) throw new NullPointerException(); if (size > 0 && (tab = table) != null) { int mc = modCount; for (int i = 0; i e = tab[i]; e != null; e = e.next) { e.value = function.apply(e.key, e.value); } } if (modCount != mc) throw new ConcurrentModificationException(); } } @SuppressWarnings("unchecked") @Override public Object clone() { HashMap<k> result; try { result = (HashMap<k>)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } result.reinitialize(); result.putMapEntries(this, false); return result; } final float loadFactor() { return loadFactor; } final int capacity() { return (table != null) ? table.length : (threshold > 0) ? threshold : DEFAULT_INITIAL_CAPACITY; } private void writeObject(java.io.ObjectOutputStream s) throws IOException { int buckets = capacity(); // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); s.writeInt(buckets); s.writeInt(size); internalWriteEntries(s); } private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold (ignored), loadfactor, and any hidden stuff s.defaultReadObject(); reinitialize(); if (loadFactor 0) { // (if zero, use defaults) // Size the table using given load factor only if within // range of 0.25...4.0 float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); float fc = (float)mappings / lf + 1.0f; int cap = ((fc = MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)fc)); float ft = (float)cap * lf; threshold = ((cap [] tab = (Node<k>[])new Node[cap]; table = tab; // Read the keys and values, and put the mappings in the HashMap for (int i = 0; i next; // next entry to return Node<k> current; // current entry int expectedModCount; // for fast-fail int index; // current slot HashIterator() { expectedModCount = modCount; Node<k>[] t = table; current = next = null; index = 0; if (t != null && size > 0) { // advance to first entry do {} while (index nextNode() { Node<k>[] t; Node<k> e = next; if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (e == null) throw new NoSuchElementException(); if ((next = (current = e).next) == null && (t = table) != null) { do {} while (index p = current; if (p == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); current = null; K key = p.key; removeNode(hash(key), key, null, false, false); expectedModCount = modCount; } } final class KeyIterator extends HashIterator implements Iterator<k> { public final K next() { return nextNode().key; } } final class ValueIterator extends HashIterator implements Iterator<v> { public final V next() { return nextNode().value; } } final class EntryIterator extends HashIterator implements Iterator<map.entry>> { public final Map.Entry<k> next() { return nextNode(); } } static class HashMapSpliterator<k> { final HashMap<k> map; Node<k> current; // current node int index; // current index, modified on advance/split int fence; // one past last index int est; // size estimate int expectedModCount; // for comodification checks HashMapSpliterator(HashMap<k> m, int origin, int fence, int est, int expectedModCount) { this.map = m; this.index = origin; this.fence = fence; this.est = est; this.expectedModCount = expectedModCount; } final int getFence() { // initialize fence and size on first use int hi; if ((hi = fence) m = map; est = m.size; expectedModCount = m.modCount; Node<k>[] tab = m.table; hi = fence = (tab == null) ? 0 : tab.length; } return hi; } public final long estimateSize() { getFence(); // force init return (long) est; } } static final class KeySpliterator<k> extends HashMapSpliterator<k> implements Spliterator<k> { KeySpliterator(HashMap<k> m, int origin, int fence, int est, int expectedModCount) { super(m, origin, fence, est, expectedModCount); } public KeySpliterator<k> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new KeySpliterator(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer super K> action) { int i, hi, mc; if (action == null) throw new NullPointerException(); HashMap<k> m = map; Node<k>[] tab = m.table; if ((hi = fence) = hi && (i = index) >= 0 && (i p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p.key); p = p.next; } } while (p != null || i action) { int hi; if (action == null) throw new NullPointerException(); Node<k>[] tab = map.table; if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { while (current != null || index extends HashMapSpliterator<k> implements Spliterator<v> { ValueSpliterator(HashMap<k> m, int origin, int fence, int est, int expectedModCount) { super(m, origin, fence, est, expectedModCount); } public ValueSpliterator<k> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new ValueSpliterator(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer super V> action) { int i, hi, mc; if (action == null) throw new NullPointerException(); HashMap<k> m = map; Node<k>[] tab = m.table; if ((hi = fence) = hi && (i = index) >= 0 && (i p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p.value); p = p.next; } } while (p != null || i action) { int hi; if (action == null) throw new NullPointerException(); Node<k>[] tab = map.table; if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { while (current != null || index extends HashMapSpliterator<k> implements Spliterator<map.entry>> { EntrySpliterator(HashMap<k> m, int origin, int fence, int est, int expectedModCount) { super(m, origin, fence, est, expectedModCount); } public EntrySpliterator<k> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid || current != null) ? null : new EntrySpliterator(map, lo, index = mid, est >>>= 1, expectedModCount); } public void forEachRemaining(Consumer super Map.Entry<k>> action) { int i, hi, mc; if (action == null) throw new NullPointerException(); HashMap<k> m = map; Node<k>[] tab = m.table; if ((hi = fence) = hi && (i = index) >= 0 && (i p = current; current = null; do { if (p == null) p = tab[i++]; else { action.accept(p); p = p.next; } } while (p != null || i > action) { int hi; if (action == null) throw new NullPointerException(); Node<k>[] tab = map.table; if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { while (current != null || index e = current; current = current.next; action.accept(e); if (map.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } } } return false; } public int characteristics() { return (fence newNode(int hash, K key, V value, Node<k> next) { return new Node(hash, key, value, next); } // For conversion from TreeNodes to plain nodes Node<k> replacementNode(Node<k> p, Node<k> next) { return new Node(p.hash, p.key, p.value, next); } // Create a tree bin node TreeNode<k> newTreeNode(int hash, K key, V value, Node<k> next) { return new TreeNode(hash, key, value, next); } // For treeifyBin TreeNode<k> replacementTreeNode(Node<k> p, Node<k> next) { return new TreeNode(p.hash, p.key, p.value, next); } void reinitialize() { table = null; entrySet = null; keySet = null; values = null; modCount = 0; threshold = 0; size = 0; } // Callbacks to allow LinkedHashMap post-actions void afterNodeAccess(Node<k> p) { } void afterNodeInsertion(boolean evict) { } void afterNodeRemoval(Node<k> p) { } // Called only from writeObject, to ensure compatible ordering. void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException { Node<k>[] tab; if (size > 0 && (tab = table) != null) { for (int i = 0; i e = tab[i]; e != null; e = e.next) { s.writeObject(e.key); s.writeObject(e.value); } } } } static final class TreeNode<k> extends LinkedHashMap.Entry<k> { TreeNode<k> parent; // red-black tree links TreeNode<k> left; TreeNode<k> right; TreeNode<k> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<k> next) { super(hash, key, val, next); } /** * Returns root of tree containing this node. */ final TreeNode<k> root() { for (TreeNode<k> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } /** * Ensures that the given root is the first node of its bin. */ static <k> void moveRootToFront(Node<k>[] tab, TreeNode<k> root) { int n; if (root != null && tab != null && (n = tab.length) > 0) { int index = (n - 1) & root.hash; TreeNode<k> first = (TreeNode<k>)tab[index]; if (root != first) { Node<k> rn; tab[index] = root; TreeNode<k> rp = root.prev; if ((rn = root.next) != null) ((TreeNode<k>)rn).prev = rp; if (rp != null) rp.next = rn; if (first != null) first.prev = root; root.next = first; root.prev = null; } assert checkInvariants(root); } } final TreeNode<k> find(int h, Object k, Class> kc) { TreeNode<k> p = this; do { int ph, dir; K pk; TreeNode<k> pl = p.left, pr = p.right, q; if ((ph = p.hash) > h) p = pl; else if (ph getTreeNode(int h, Object k) { return ((parent != null) ? root() : this).find(h, k, null); } static int tieBreakOrder(Object a, Object b) { int d; if (a == null || b == null || (d = a.getClass().getName(). compareTo(b.getClass().getName())) == 0) d = (System.identityHashCode(a) [] tab) { TreeNode<k> root = null; for (TreeNode<k> x = this, next; x != null; x = next) { next = (TreeNode<k>)x.next; x.left = x.right = null; if (root == null) { x.parent = null; x.red = false; root = x; } else { K k = x.key; int h = x.hash; Class> kc = null; for (TreeNode<k> p = root;;) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph xp = p; if ((p = (dir untreeify(HashMap<k> map) { Node<k> hd = null, tl = null; for (Node<k> q = this; q != null; q = q.next) { Node<k> p = map.replacementNode(q, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } final TreeNode<k> putTreeVal(HashMap<k> map, Node<k>[] tab, int h, K k, V v) { Class> kc = null; boolean searched = false; TreeNode<k> root = (parent != null) ? root() : this; for (TreeNode<k> p = root;;) { int dir, ph; K pk; if ((ph = p.hash) > h) dir = -1; else if (ph q, ch; searched = true; if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<k> xp = p; if ((p = (dir xpn = xp.next; TreeNode<k> x = map.newTreeNode(h, k, v, xpn); if (dir )xpn).prev = x; moveRootToFront(tab, balanceInsertion(root, x)); return null; } } } final void removeTreeNode(HashMap<k> map, Node<k>[] tab, boolean movable) { int n; if (tab == null || (n = tab.length) == 0) return; int index = (n - 1) & hash; TreeNode<k> first = (TreeNode<k>)tab[index], root = first, rl; TreeNode<k> succ = (TreeNode<k>)next, pred = prev; if (pred == null) tab[index] = first = succ; else pred.next = succ; if (succ != null) succ.prev = pred; if (first == null) return; if (root.parent != null) root = root.root(); if (root == null || root.right == null || (rl = root.left) == null || rl.left == null) { tab[index] = first.untreeify(map); // too small return; } TreeNode<k> p = this, pl = left, pr = right, replacement; if (pl != null && pr != null) { TreeNode<k> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<k> sr = s.right; TreeNode<k> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<k> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) root = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode<k> pp = replacement.parent = p.parent; if (pp == null) root = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } TreeNode<k> r = p.red ? root : balanceDeletion(root, replacement); if (replacement == p) { // detach TreeNode<k> pp = p.parent; p.parent = null; if (pp != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; } } if (movable) moveRootToFront(tab, r); } final void split(HashMap<k> map, Node<k>[] tab, int index, int bit) { TreeNode<k> b = this; // Relink into lo and hi lists, preserving order TreeNode<k> loHead = null, loTail = null; TreeNode<k> hiHead = null, hiTail = null; int lc = 0, hc = 0; for (TreeNode<k> e = b, next; e != null; e = next) { next = (TreeNode<k>)e.next; e.next = null; if ((e.hash & bit) == 0) { if ((e.prev = loTail) == null) loHead = e; else loTail.next = e; loTail = e; ++lc; } else { if ((e.prev = hiTail) == null) hiHead = e; else hiTail.next = e; hiTail = e; ++hc; } } if (loHead != null) { if (lc TreeNode<k> rotateLeft(TreeNode<k> root, TreeNode<k> p) { TreeNode<k> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) rl.parent = p; if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static <k> TreeNode<k> rotateRight(TreeNode<k> root, TreeNode<k> p) { TreeNode<k> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) lr.parent = p; if ((pp = l.parent = p.parent) == null) (root = l).red = false; else if (pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } static <k> TreeNode<k> balanceInsertion(TreeNode<k> root, TreeNode<k> x) { x.red = true; for (TreeNode<k> xp, xpp, xppl, xppr;;) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) return root; if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <k> TreeNode<k> balanceDeletion(TreeNode<k> root, TreeNode<k> x) { for (TreeNode<k> xp, xpl, xpr;;) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode<k> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode<k> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <k> boolean checkInvariants(TreeNode<k> t) { TreeNode<k> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<k>)t.next; if (tb != null && tb.next != t) return false; if (tn != null && tn.prev != t) return false; if (tp != null && t != tp.left && t != tp.right) return false; if (tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if (tr != null && (tr.parent != t || tr.hash </k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></map.entry></k></k></k></k></k></k></v></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></map.entry></v></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></map.entry></k></map.entry></map.entry></map.entry></map.entry></k></v></v></v></v></v></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></k></map.entry></k></k></k></k></k></k></k>
The above is the detailed content of Detailed explanation of HashMap in Java collections. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
