Home >Backend Development >Python Tutorial >Sample code for summing rows and columns and adding new rows and columns in pandas.DataFrame in python
pandas is the most famous data statistics package in the python environment, and DataFrame is translated as data frame, which is a way of organizing data. This article mainly introduces you to the summation of rows and columns in pandas.DataFrame in python. Add a new row and column sample code. The article provides detailed sample code. Friends in need can refer to it. Let's take a look together.
This article introduces the relevant information about summing rows and columns and adding new rows and columns in pandas.DataFrame in python. I won’t say much below, let’s take a look at the detailed introduction.
The method is as follows:
Import module:
from pandas import DataFrame import pandas as pd import numpy as np
Generate DataFrame data
df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E'])
DataFrame data preview:
A B C D E 0 0.673092 0.230338 -0.171681 0.312303 -0.184813 1 -0.504482 -0.344286 -0.050845 -0.811277 -0.298181 2 0.542788 0.207708 0.651379 -0.656214 0.507595 3 -0.249410 0.131549 -2.198480 -0.437407 1.628228
Calculate the sum of the data in each column and add it to the end as a new column
df['Col_sum'] = df.apply(lambda x: x.sum(), axis=1)
Calculate the sum of the data in each row and add it to the end as a new row
df.loc['Row_sum'] = df.apply(lambda x: x.sum())
Final data result:
A B C D E Col_sum 0 0.673092 0.230338 -0.171681 0.312303 -0.184813 0.859238 1 -0.504482 -0.344286 -0.050845 -0.811277 -0.298181 -2.009071 2 0.542788 0.207708 0.651379 -0.656214 0.507595 1.253256 3 -0.249410 0.131549 -2.198480 -0.437407 1.628228 -1.125520 Row_sum 0.461987 0.225310 -1.769627 -1.592595 1.652828 -1.022097
Related articles:
Detailed explanation of pandas.DataFrame in python to exclude specific rows sample code
The above is the detailed content of Sample code for summing rows and columns and adding new rows and columns in pandas.DataFrame in python. For more information, please follow other related articles on the PHP Chinese website!