1. Parameters and shared references:
In [56]: def changer(a,b): ....: a=2 ....: b[0]='spam' ....: In [57]: X=1 In [59]: L=[1,2] In [60]: changer(X,L) In [61]: X,L Out[61]: (1, ['spam', 2])
Function parameters are assigned values and passed through variables when calling To implement shared objects, remote modification of variable object parameters in functions can affect the caller.
Avoid variable parameter modification:
In [67]: X=1 In [68]: a=X In [69]: a=2 In [70]: print(X) 1 In [71]: L=[1,2] In [72]: b=L In [73]: b[0]='spam' In [74]: print(L) ['spam', 2] In [75]: changer(X,L[:]) #不想要函数内部在原处的修改影响传递给它的对象,可以创建一个对象的拷贝 In [77]: changer(a,b) In [78]: def changer(a,b): ....: b=b[:] #如果不想改变传入对象,无论函数怎么调用,同样可以在函数内部进行拷贝。 ....: In [79]: a=2 In [80]: b[0]='spam'
2. Specific parameter matching model:
Function matching syntax:
Example:
Keyword parameters:
In [2]: def f(a,b,c):print (a,b,c) In [3]: f(1,2,3) #位置参数调用 (1, 2, 3) In [4]: f(c=3,b=2,a=1) #关键字参数调用 (1, 2, 3)
Default parameters:
In [5]: def f(a,b=2,c=3):print (a,b,c) In [6]: f(1) #给a赋值,b,c使用默认赋值 (1, 2, 3) In [7]: f(a=1) (1, 2, 3) In [8]: f(1,4) (1, 4, 3) In [9]: f(1,4,5) #不适用默认值 (1, 4, 5) In [10]: f(1,c=6) #a通过位置得到1,b使用默认值,c通过关键字得到6 (1, 2, 6)
3. Any parameters:
1. Collection parameters:
#*和**出现在函数定义或函数调用中。 In [11]: def f(*args):print (args) In [12]: f() #将所有位置相关的参数收集到一个新的元祖中 () In [13]: f(1) (1,) In [14]: f(1,2,3,4) (1, 2, 3, 4) In [15]: def f(**args):print (args) In [16]: f() {} In [17]: f(a=1,b=2) #**只对关键字参数有效 {'a': 1, 'b': 2} In [19]: def f(a, *pargs,**kargs):print(a,pargs,kargs) In [20]: f(1,2,3,4,5,6,x=1,y=2,z=3) (1, (2, 3, 4, 5, 6), {'y': 2, 'x': 1, 'z': 3})
2. Unpacking parameters:
Note: Do not confuse The syntax of */** in the function header or function call: in the header means collecting any number of parameters, and in the call, it connects any number of parameters.
In [21]: def func(a,b,c,d):print(a,b,c,d) In [22]: args=(1,2) In [23]: args += (3,4) In [24]: func(*args) (1, 2, 3, 4) In [25]: args={'a':1,'b':2,'c':3} In [26]: args['d']=4 In [27]: func(**args) (1, 2, 3, 4) In [28]: func(*(1,2),**{'d':4,'c':4}) (1, 2, 4, 4) In [30]: func(1,*(2,3),**{'d':4}) (1, 2, 3, 4) In [31]: func(1,c=3,*(2,),**{'d':4}) (1, 2, 3, 4) In [32]: func(1,*(2,3,),d=4) (1, 2, 3, 4) In [33]: func(1,*(2,),c=3,**{'d':4}) (1, 2, 3, 4)
3. Application function versatility:
In [34]: def tracer(func,*pargs,**kargs): ....: print ('calling:',func.__name__) ....: return func(*pargs,**kargs) ....: In [35]: def func(a,b,c,d): ....: return a+b+c+d ....: print (tracer(func,1,2,c=3,d=4)) ....: ('calling:', 'func') 10
4. The apply built-in function is abandoned in python3.
In [36]: pargs=(1,2) In [37]: kargs={'a':3,'b':4} In [41]: def echo(*args,**kargs):print (args,kargs) In [42]: apply(echo,pargs,kargs) ((1, 2), {'a': 3, 'b': 4})
4. Keyword-only parameters in python3.x
python3.x generalizes the sorting rules of function headers, allowing We specify keyword-only parameters, that is, parameters that are passed according to keywords and will not be filled by a positional parameter; after the parameter *args, the keyword syntax must be called to pass.In [43]: echo(*pargs,**kargs) ((1, 2), {'a': 3, 'b': 4}) In [44]: echo(0,c=5,*pargs,**kargs) ((0, 1, 2), {'a': 3, 'c': 5, 'b': 4})
1. Sorting rules:
** cannot appear alone in the parameters. The following are incorrect usages :In [1]: def kwonly(a,*b,c): ...: print(a,b,c) In [2]: kwonly(1,2,c=3) 1 (2,) 3 In [3]: kwonly(a=1,c=3) 1 () 3 In [4]: kwonly(1,2,3) #c必须按照关键字传递 TypeError: kwonly() missing 1 required keyword-only argument: 'c' In [6]: def kwonly(a,*,b,c):print(a,b,c) In [7]: kwonly(1,c=3,b=2) 1 2 3 In [8]: kwonly(c=3,b=2,a=1) 1 2 3 In [9]: kwonly(1,2,3) TypeError: kwonly() takes 1 positional argument but 3 were given
That is to say, in a function header, keyword-only parameters must be written before any keyword form of *args, or appear before or after args. , and may be included in **args.
In [11]: def kwonly(a,**pargs,b,c): ....: File "<ipython-input-11-177c37879903>", line 1 def kwonly(a,**pargs,b,c): ^ SyntaxError: invalid syntax In [13]: def kwonly(a,**,b,c): ....: File "<ipython-input-13-46041ada2700>", line 1 def kwonly(a,**,b,c): ^ SyntaxError: invalid syntax
2. Why use keyword-only parameters?
It is easy to allow a function to accept any number of Handling positional arguments, which also accept configuration options passed as keywords, can reduce code that would otherwise have to use *args and **args and manually check keywords.3. Min calls
to write a function that can calculate the minimum value in any parameter set and any object data type set.
Method 1: Use slicingIn [14]: def f(a,*b,**d,c=6):print(a,b,c,d) File "<ipython-input-14-43c901fce151>", line 1 def f(a,*b,**d,c=6):print(a,b,c,d) ^ SyntaxError: invalid syntax In [15]: def f(a,*b,c=6,**d):print(a,b,c,d) #keyword-only在*args之后,**args之前 In [16]: f(1,2,3,x=4,y=5) 1 (2, 3) 6 {'x': 4, 'y': 5} In [20]: f(1,c=7,*(2,3),**dict(x=4,y=5)) #keyword-only在 1 (2, 3) 7 {'x': 4, 'y': 5} In [21]: f(1,*(2,3),**dict(x=4,y=5,c=7)) 1 (2, 3) 7 {'x': 4, 'y': 5}Method 2: Let python obtain it automatically to avoid slicing.
In [23]: def min(*args): ....: res=args[0] ....: for arg in args[1:]: ....: if arg < res: ....: res = arg ....: return res ....:Method 3: Call the built-in function list, convert the ancestor into a list, and then call the built-in sort method of list. Note: Because the python sort routine is written in C and uses a highly optimized algorithm, the running speed is much faster than the first two.
In [28]: def min2(first,*rest): ....: for arg in rest: ....: if arg < first: ....: first = arg ....: return first ....:
5. Example:
1. Simulate the general set function:
Write a function to return the common part of the two sequences, and write the inter2.py file as follows:In [32]: def min3(*args): ....: tmp=list(args) ....: tmp.sort() ....: return tmp[0] ....: In [29]: min2(3,*(1,2,3,4)) Out[29]: 1 In [31]: min(*(5,6,6,2,2,7)) Out[31]: 2 In [33]: min3(3,4,5,5,2) Out[33]: 2
Test:
#!/usr/bin/python3 def intersect(*args): res=[] for x in args[0]: for other in args[1:]: if x not in other: break else: res.append(x) return res def union(*args): res=[] for seq in args: for x in seq: if not x in res: res.append(x) return res
2. Simulate python 3.x print function
Write the file python30.py(1) Use *args Interaction results with **args methodenvironment python2.7In [3]: from inter2 import intersect,union In [4]: s1,s2,s3="SPAM","SCAM","SLAM" In [5]: intersect(s1,s2),union(s1,s2) Out[5]: (['S', 'A', 'M'], ['S', 'P', 'A', 'M', 'C']) In [6]: intersect([1,2,3],(1,4)) Out[6]: [1] In [7]: intersect(s1,s2,s3) Out[7]: ['S', 'A', 'M'] In [8]: union(s1,s2,s3) Out[8]: ['S', 'P', 'A', 'M', 'C', 'L']:
#!/usr/bin/python import sys def print30(*args,**kargs): sep = kargs.get('sep',' ') end = kargs.get('end','\n') file = kargs.get('file',sys.stdout) if kargs:raise TypeError('extra keywords: %s' %kargs) output = '' first = True for arg in args: output += ('' if first else sep)+str(arg) first = False file.write(output + end)(2) Use the keyword-only method to achieve the same effect as method one:
In [5]: print30(1,2,3) 1 2 3 In [6]: print30(1,2,3,sep='') 123 In [7]: print30(1,2,3,sep='...') 1...2...3 In [8]: print30(1,[2],(3,),sep='...') 1...[2]...(3,) In [9]: print30(4,5,6,sep='',end='') 456 In [11]: print30(1,2,3) 1 2 3 In [12]: print30()More function parameter settings in Python and Please pay attention to the PHP Chinese website for articles related to the method of use!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 English version
Recommended: Win version, supports code prompts!

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools