The operator module is the built-in operator function interface in python. It defines some functions for arithmetic and comparison built-in operations. The operator module is implemented in C, so the execution speed is faster than Python code.
Logical operation
from operator import * a = [1, 2, 3] b = a print 'a =', a print 'b =', b print print 'not_(a) :', not_(a) print 'truth(a) :', truth(a) print 'is_(a, b) :', is_(a, b) print 'is_not(a, b) :', is_not(a, b)
Print result:
a = [1, 2, 3] b = [1, 2, 3] not_(a) : False truth(a) : True is_(a, b) : True is_not(a, b): False
You can know from the results that some operating functions of the operator are the same as the original operations.
Comparison operator
operator provides rich comparison operations.
a = 3 b = 5 print 'a =', a print 'b =', b print for func in (lt, le, eq, ne, ge, gt): print '{0}(a, b):'.format(func.__name__), func(a, b)
Print results
a = 3 b = 5 lt(a, b): True le(a, b): True eq(a, b): False ne(a, b): True ge(a, b): False gt(a, b): False
These functions are equivalent to =, and >.
Arithmetic operators
Arithmetic operators for working with numbers are also supported.
a, b, c, d = -1, 2, -3, 4 print 'a =', a print 'b =', b print 'c =', c print 'd =', d print '\nPositive/Negative:' print 'abs(a):', abs(a) print 'neg(a):', neg(a) print 'neg(b):', neg(b) print 'pos(a):', pos(a) print 'pos(b):', pos(b)
Print results
a = -1 b = 2 c = -3 d = 4 Positive/Negative: abs(a): 1 neg(a): 1 neg(b): -2 pos(a): -1 pos(b): 2
abs returns the absolute value, neg Return (-obj), pos returns (+obj).
a = -2 b = 5.0 print 'a =', a print 'b =', b print '\nArithmetic' print 'add(a, b) :', add(a, b) print 'p(a, b) :', p(a, b) print 'floorp(a, b) :', floorp(a, b) print 'mod(a, b) :', mod(a, b) print 'mul(a, b) :', mul(a, b) print 'pow(a, b) :', pow(a, b) print 'sub(a, b) :', sub(a, b) print 'truep(a, b) :', truep(a, b)
Print result
a = -2 b = 5.0 Arithmetic add(a, b) : 3.0 p(a, b) : -0.4 floorp(a, b) : -1.0 mod(a, b) : 3.0 # 查看负数取模 mul(a, b) : -10.0 pow(a, b) : -32.0 sub(a, b) : -7.0 truep(a, b) : -0.4
mod means taking modulus, mul means multiplying, pow is the power, sub means subtraction
a = 2 b = 6 print 'a =', a print 'b =', b print '\nBitwise:' print 'and_(a, b) :', and_(a, b) print 'invert(a) :', invert(a) print 'lshift(a, b) :', lshift(a, b) print 'or_(a, b) :', or_(a, b) print 'rshift(a, b) :', rshift(a, b) print 'xor(a, b) :', xor(a, b)
Print result
a = 2 b = 6 Bitwise: and_(a, b) : 2 invert(a) : -3 lshift(a, b) : 128 or_(a, b) : 6 rshift(a, b) : 0 xor(a, b) : 4
and It means bitwise AND, invert means negation operation, lshift means left shift, or means bitwise OR, rshift means right shift, and xor means bitwise XOR.
In-place operator
That is, in-place operation, x += y is equivalent to x = iadd(x, y), if copied to other variables such as z = iadd(x, y) is equivalent to z = x; z += y.
a = 3 b = 4 c = [1, 2] d = ['a', 'b'] print 'a =', a print 'b =', b print 'c =', c print 'd =', d print a = iadd(a, b) print 'a = iadd(a, b) =>', a print c = iconcat(c, d) print 'c = iconcat(c, d) =>', c
Getting methods for attributes and elements
One of the most special features of the operator module is the concept of getting methods, getting methods They are some callback objects constructed at runtime, used to obtain the properties of the object or the contents of the sequence. The acquisition methods are particularly useful when dealing with iterators or generator sequences. The overhead they introduce will greatly reduce the overhead of lambda or Python functions.
from operator import * class MyObj(object): def __init__(self, arg): super(MyObj, self).__init__() self.arg = arg def __repr__(self): return 'MyObj(%s)' % self.arg objs = [MyObj(i) for i in xrange(5)] print "Object:", objs g = attrgetter("arg") vals = [g(i) for i in objs] print "arg values:", vals objs.reverse() print "reversed:", objs print "sorted:", sorted(objs, key=g)
Result:
Object: [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)] arg values: [0, 1, 2, 3, 4] reversed: [MyObj(4), MyObj(3), MyObj(2), MyObj(1), MyObj(0)] sorted: [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
The attribute acquisition method is similar to
lambda x, n='attrname':getattr(x,nz)
The element acquisition method is similar to
lambda x,y=5:x[y]
from operator import * l = [dict(val=-1*i) for i in xrange(4)] print "dictionaries:", l g = itemgetter("val") vals = [g(i) for i in l] print "values: ", vals print "sorted:", sorted(l, key=g) l = [(i,i*-2) for i in xrange(4)] print "tuples: ", l g = itemgetter(1) vals = [g(i) for i in l] print "values:", vals print "sorted:", sorted(l, key=g)
The results are as follows:
dictionaries: [{'val': 0}, {'val': -1}, {'val': -2}, {'val': -3}] values: [0, -1, -2, -3] sorted: [{'val': -3}, {'val': -2}, {'val': -1}, {'val': 0}] tuples: [(0, 0), (1, -2), (2, -4), (3, -6)] values: [0, -2, -4, -6] sorted: [(3, -6), (2, -4), (1, -2), (0, 0)]
In addition to sequences, element get methods also work with mappings.
Combining operators and custom classes
The functions in the operator module complete their work through the standard Python interface of the corresponding operation, so they are suitable not only for built-in types, but also for user-defined types type.
from operator import * class MyObj(object): def __init__(self, val): super(MyObj, self).__init__() self.val = val return def __str__(self): return "MyObj(%s)" % self.val def __lt__(self, other): return self.val < other.val def __add__(self, other): return MyObj(self.val + other.val) a = MyObj(1) b = MyObj(2) print lt(a, b) print add(a,b)
The result looks like this:
True MyObj(3)
Type check
The operator module also contains functions for testing API compatibility of mapping, numeric and sequence types.
from operator import * class NoType(object): pass class MultiType(object): def __len__(self): return 0 def __getitem__(self, name): return "mapping" def __int__(self): return 0 o = NoType() t = MultiType() for func in [isMappingType, isNumberType, isSequenceType]: print "%s(o):" % func.__name__, func(o) print "%s(t):" % func.__name__, func(t)
The results are as follows:
isMappingType(o): False isMappingType(t): True isNumberType(o): False isNumberType(t): True isSequenceType(o): False isSequenceType(t): True
But these tests are imperfect because of the excuse There is no strict definition.
Get the object method
Use methodcaller to get the method of the object.
from operator import methodcaller class Student(object): def __init__(self, name): self.name = name def getName(self): return self.name stu = Student("Jim") func = methodcaller('getName') print func(stu) # 输出Jim
You can also pass parameters to the method:
f=methodcaller('name', 'foo', bar=1) f(b) # return b.name('foo', bar=1) methodcaller方法等价于下面这个函数: def methodcaller(name, *args, **kwargs): def caller(obj): return getattr(obj, name)(*args, **kwargs) return caller
For more articles related to the use of operators in the operator module in Python, please pay attention to the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
