search
HomeWeb Front-endJS TutorialWrite high-performance JavaScript

Write high-performance JavaScript

Feb 21, 2017 am 11:45 AM
JavaScripthigh performance



Write high-performance JavaScript

The original intention of this article is to introduce how to use some simple coding tips to improve the JavaScript compiler The optimization process improves code running efficiency. Especially in games where the speed of garbage collection is high, users will see a white screen if the performance is slightly poor.

Monomorphism: Monomorphism

JavaScript allows dynamic parameters to be passed in when a function is called, but taking a simple 2-parameter function as an example, when your parameter type, number of parameters and return type It can only be determined when calling dynamically, and the compiler needs more time to parse. Compilers naturally want to be able to handle monomorphically predictable data structures, parameter statistics, etc.

function example(a, b) {
  // we expect a, b to be numeric
  console.log(++a * ++b);
};

example(); // bad
example(1); // still bad
example("1", 2); // dammit meg

example(1, 2); // good

Constants: Constants

Using constants allows the compiler to complete variable value replacement during compilation:

const a = 42; // we can easily unfold this
const b = 1337 * 2; // we can resolve this expression
const c = a + b; // still can be resolved
const d = Math.random() * c; // we can only unfold 'c'

// before unfolding
a;
b;
c;
d;

// after unfolding
// we can do this at compile time!
42;
2674;
2716;
Math.random() * 2716;

Inlining: inline

JIT The compiler can find the parts of your code that are executed most often. Splitting your code into small code blocks can help the compiler convert these code blocks into inline format at compile time and increase execution speed. .

Data Types: Data Types

Use Numbers and Booleans types as much as possible because they perform better than other primitive types such as strings. Using string types may incur additional garbage collection costs.

const ROBOT = 0;
const HUMAN = 1;
const SPIDER = 2;

let E_TYPE = {
  Robot: ROBOT,
  Human: HUMAN,
  Spider: SPIDER
};

// bad
// avoid uncached strings in heavy tasks (or better in general)
if (entity.type === "Robot") {
  
}

// good
// the compiler can resolve member expressions
// without much deepness pretty fast
if (entity.type === E_TYPE.Robot) {
  
}

// perfect
// right side of binary expression can even get unfold
if (entity.type === ROBOT) {
  
}

Strict & Abstract Operators

Use the === strict comparison operator instead of the == operator whenever possible. Using strict comparison operators can avoid the compiler from performing type deduction and conversion, thus improving certain performance.

Strict Conditions

The if statement in JavaScript is also very flexible. You can directly pass any similar a value into the if(a) then bla type of conditional selection statement. However, in this case, just like the strict comparison operators and loose comparison operators mentioned above, the compiler needs to convert them into multiple data types for comparison, and the results cannot be obtained immediately. Of course, this is not a blind objection to the use of abbreviations, but in scenarios that place great emphasis on performance, it is recommended to optimize every detail:

let a = 2;

// bad
// abstracts to check in the worst case:
// - is value equal to true
// - is value greater than zero
// - is value not null
// - is value not NaN
// ..
if (a) {
 // if a is true, do something 
}

// good
if (a === 2) {
  // do sth 
}

// same goes for functions
function b() {
  return (!false);
};

if (b()) {
  // get in here slow
}

if (b() === true) {
  // get in here fast
  // the compiler knows a specific value to compare with
}

Arguments

Avoid using arguments as much as possible [index] method to obtain parameters, and try to avoid modifying the incoming parameter variables:

function mul(a, b) {
  return (arguments[0]*arguments[1]); // bad, very slow
  return (a*b); // good
};

function test(a, b) {
  a = 5; // bad, dont modify argument identifiers
  let tmp = a; // good
  tmp *= 2; // we can now modify our fake 'a'
};

Toxicity: These keywords are poisonous

Toxicity

Several syntaxes listed below Features that affect the optimization process:

  • eval

  • with

  • try/catch

At the same time, try to avoid declaring functions or closures within functions, which may cause too many garbage collection operations in a large number of operations.

Objecs

Object instances usually share implicit classes, so when we access or set the value of an undefined variable of an instance, an implicit class is created.

// our hidden class 'hc_0'
class Vector {
  constructor(x, y) {
    // compiler finds and expects member declarations here
    this.x = x;
    this.y = y;
  }
};

// both vector objects share hidden class 'hc_0'
let vec1 = new Vector(0, 0);
let vec2 = new Vector(2, 2);

// bad, vec2 got hidden class 'hc_1' now
vec2.z = 0;

// good, compiler knows this member
vec2.x = 1;

Loops

Cache the calculated value of the array length as much as possible, and store a single type in the same array as much as possible. Avoid using the for-in syntax to iterate over an array because it's really slow. In addition, the performance of continue and break statements in loops is also good, so you don’t have to worry about this when using them. In addition, split short logical parts into independent functions as much as possible, which is more conducive to compiler optimization. In addition, using prefix auto-increment expressions can also bring about a small performance improvement. (++i instead of i++)

let badarray = [1, true, 0]; // bad, dont mix types
let array = [1, 0, 1]; // happy compiler

// bad choice
for (let key in array) {
  
};

// better
// but always try to cache the array size
let i = 0;
for (; i < array.length; ++i) {
  key = array[i];
};

// good
let i = 0;
let key = null;
let length = array.length;
for (; i < length; ++i) {
  key = array[i];
};

drawImage

draeImage function is one of the fastest 2D Canvas APIs, but we need to pay attention to if all parameters are omitted for the sake of convenience. , will also increase performance loss:

// bad
ctx.drawImage(
  img,
  x, y
);

// good
ctx.drawImage(
  img,
  // clipping
  sx, sy,
  sw, sh,
  // actual stuff
  x, y,
  w, h
);

// much hax
// no subpixel rendering by passing integers
ctx.drawImage(
  img,
  sx|0, sy|0,
  sw|0, sh|0,
  x|0, y|0,
  w|0, h|0
);

The above is the content of writing high-performance JavaScript. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript and the Web: Core Functionality and Use CasesJavaScript and the Web: Core Functionality and Use CasesApr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding the JavaScript Engine: Implementation DetailsUnderstanding the JavaScript Engine: Implementation DetailsApr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: The Learning Curve and Ease of UsePython vs. JavaScript: The Learning Curve and Ease of UseApr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python vs. JavaScript: Community, Libraries, and ResourcesPython vs. JavaScript: Community, Libraries, and ResourcesApr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

From C/C   to JavaScript: How It All WorksFrom C/C to JavaScript: How It All WorksApr 14, 2025 am 12:05 AM

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

JavaScript Engines: Comparing ImplementationsJavaScript Engines: Comparing ImplementationsApr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Beyond the Browser: JavaScript in the Real WorldBeyond the Browser: JavaScript in the Real WorldApr 12, 2025 am 12:06 AM

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

Building a Multi-Tenant SaaS Application with Next.js (Backend Integration)Building a Multi-Tenant SaaS Application with Next.js (Backend Integration)Apr 11, 2025 am 08:23 AM

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment