The original intention of this article is to introduce how to use some simple coding tips to improve the JavaScript compiler The optimization process improves code running efficiency. Especially in games where the speed of garbage collection is high, users will see a white screen if the performance is slightly poor.
Monomorphism: Monomorphism
JavaScript allows dynamic parameters to be passed in when a function is called, but taking a simple 2-parameter function as an example, when your parameter type, number of parameters and return type It can only be determined when calling dynamically, and the compiler needs more time to parse. Compilers naturally want to be able to handle monomorphically predictable data structures, parameter statistics, etc.
function example(a, b) { // we expect a, b to be numeric console.log(++a * ++b); }; example(); // bad example(1); // still bad example("1", 2); // dammit meg example(1, 2); // good
Constants: Constants
Using constants allows the compiler to complete variable value replacement during compilation:
const a = 42; // we can easily unfold this const b = 1337 * 2; // we can resolve this expression const c = a + b; // still can be resolved const d = Math.random() * c; // we can only unfold 'c' // before unfolding a; b; c; d; // after unfolding // we can do this at compile time! 42; 2674; 2716; Math.random() * 2716;
Inlining: inline
JIT The compiler can find the parts of your code that are executed most often. Splitting your code into small code blocks can help the compiler convert these code blocks into inline format at compile time and increase execution speed. .
Data Types: Data Types
Use Numbers and Booleans types as much as possible because they perform better than other primitive types such as strings. Using string types may incur additional garbage collection costs.
const ROBOT = 0; const HUMAN = 1; const SPIDER = 2; let E_TYPE = { Robot: ROBOT, Human: HUMAN, Spider: SPIDER }; // bad // avoid uncached strings in heavy tasks (or better in general) if (entity.type === "Robot") { } // good // the compiler can resolve member expressions // without much deepness pretty fast if (entity.type === E_TYPE.Robot) { } // perfect // right side of binary expression can even get unfold if (entity.type === ROBOT) { }
Strict & Abstract Operators
Use the === strict comparison operator instead of the == operator whenever possible. Using strict comparison operators can avoid the compiler from performing type deduction and conversion, thus improving certain performance.
Strict Conditions
The if statement in JavaScript is also very flexible. You can directly pass any similar a value into the if(a) then bla type of conditional selection statement. However, in this case, just like the strict comparison operators and loose comparison operators mentioned above, the compiler needs to convert them into multiple data types for comparison, and the results cannot be obtained immediately. Of course, this is not a blind objection to the use of abbreviations, but in scenarios that place great emphasis on performance, it is recommended to optimize every detail:
let a = 2; // bad // abstracts to check in the worst case: // - is value equal to true // - is value greater than zero // - is value not null // - is value not NaN // .. if (a) { // if a is true, do something } // good if (a === 2) { // do sth } // same goes for functions function b() { return (!false); }; if (b()) { // get in here slow } if (b() === true) { // get in here fast // the compiler knows a specific value to compare with }
Arguments
Avoid using arguments as much as possible [index] method to obtain parameters, and try to avoid modifying the incoming parameter variables:
function mul(a, b) { return (arguments[0]*arguments[1]); // bad, very slow return (a*b); // good }; function test(a, b) { a = 5; // bad, dont modify argument identifiers let tmp = a; // good tmp *= 2; // we can now modify our fake 'a' };
Toxicity: These keywords are poisonous
Toxicity
Several syntaxes listed below Features that affect the optimization process:
eval
with
-
try/catch
At the same time, try to avoid declaring functions or closures within functions, which may cause too many garbage collection operations in a large number of operations.
Objecs
Object instances usually share implicit classes, so when we access or set the value of an undefined variable of an instance, an implicit class is created.
// our hidden class 'hc_0' class Vector { constructor(x, y) { // compiler finds and expects member declarations here this.x = x; this.y = y; } }; // both vector objects share hidden class 'hc_0' let vec1 = new Vector(0, 0); let vec2 = new Vector(2, 2); // bad, vec2 got hidden class 'hc_1' now vec2.z = 0; // good, compiler knows this member vec2.x = 1;
Loops
Cache the calculated value of the array length as much as possible, and store a single type in the same array as much as possible. Avoid using the for-in syntax to iterate over an array because it's really slow. In addition, the performance of continue and break statements in loops is also good, so you don’t have to worry about this when using them. In addition, split short logical parts into independent functions as much as possible, which is more conducive to compiler optimization. In addition, using prefix auto-increment expressions can also bring about a small performance improvement. (++i instead of i++)
let badarray = [1, true, 0]; // bad, dont mix types let array = [1, 0, 1]; // happy compiler // bad choice for (let key in array) { }; // better // but always try to cache the array size let i = 0; for (; i < array.length; ++i) { key = array[i]; }; // good let i = 0; let key = null; let length = array.length; for (; i < length; ++i) { key = array[i]; };
drawImage
draeImage function is one of the fastest 2D Canvas APIs, but we need to pay attention to if all parameters are omitted for the sake of convenience. , will also increase performance loss:
// bad ctx.drawImage( img, x, y ); // good ctx.drawImage( img, // clipping sx, sy, sw, sh, // actual stuff x, y, w, h ); // much hax // no subpixel rendering by passing integers ctx.drawImage( img, sx|0, sy|0, sw|0, sh|0, x|0, y|0, w|0, h|0 );
The above is the content of writing high-performance JavaScript. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment