Mysql relational database management system
MySQL is an open source small relational database management system developed by the Swedish MySQL AB company. MySQL is widely used in small and medium-sized websites on the Internet. Due to its small size, fast speed, low total cost of ownership, and especially the characteristics of open source, many small and medium-sized websites choose MySQL as their website database in order to reduce the total cost of website ownership.
This article mainly introduces how to use MYSQL to implement group statistics every 10 minutes. The article gives detailed sample code. I believe it will be helpful to everyone. Understanding and learning has certain reference value. Friends in need can take a look below.
Preface
The content of this article mainly introduces the implementation method of MYSQL's group statistics every 10 minutes. When drawing the distribution chart of user login and operation status within a day, it will be Very useful. Before, I only knew how to use "stored procedure" (although the execution speed is fast, it is really too inflexible). Later, I learned to use the more advanced "group by" method to flexibly implement similar functions.
Text:
-- time_str '2016-11-20 04:31:11' -- date_str 20161120 select concat(left(date_format(time_str, '%y-%m-%d %h:%i'),15),'0') as time_flag, count(*) as count from `security`.`cmd_info` where `date_str`=20161120 group by time_flag order by time_flag; -- 127 rows select round(unix_timestamp(time_str)/(10 * 60)) as timekey, count(*) from `security`.`cmd_info` where `date_str`=20161120 group by timekey order by timekey; -- 126 rows -- 以上2个SQL语句的思路类似——使用「group by」进行区分,但是方法有所不同,前者只能针对10分钟(或1小时)级别,后者可以动态调整间隔大小,两者效率差不多, 可以根据实际情况选用 select concat(date(time_str),' ',hour(time_str),':',round(minute(time_str)/10,0)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), round(minute(time_str)/10,0)*10; -- 145 rows select concat(date(time_str),' ',hour(time_str),':',floor(minute(time_str)/10)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), floor(minute(time_str)/10)*10; -- 127 rows (和 date_format 那个等价) select concat(date(time_str),' ',hour(time_str),':',ceil(minute(time_str)/10)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), ceil(minute(time_str)/10)*10; -- 151 rows
&
DELIMITER // DROP PROCEDURE IF EXISTS `usp_cmd_info`; CREATE PROCEDURE `usp_cmd_info`(IN dates VARCHAR(12)) BEGIN SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 00:00:00") AND CONCAT(dates, " 00:10:00") INTO @count_0; SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 00:10:00") AND CONCAT(dates, " 00:20:00") INTO @count_1; ... SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 23:40:00") AND CONCAT(dates, " 23:50:00") INTO @count_142; SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 23:50:00") AND CONCAT(dates, " 23:59:59") INTO @count_143; select @count_0, @count_1, @count_2, @count_3, @count_4, @count_5, @count_6, @count_7, @count_8, @count_9, @count_10, @count_11, @count_12, @count_13, @count_14, @count_15, @count_16, @count_17, @count_18, @count_19, @count_20, @count_21, @count_22, @count_23, @count_24, @count_25, @count_26, @count_27, @count_28, @count_29, @count_30, @count_31, @count_32, @count_33, @count_34, @count_35, @count_36, @count_37, @count_38, @count_39, @count_40, @count_41, @count_42, @count_43, @count_44, @count_45, @count_46, @count_47, @count_48, @count_49, @count_50, @count_51, @count_52, @count_53, @count_54, @count_55, @count_56, @count_57, @count_58, @count_59, @count_60, @count_61, @count_62, @count_63, @count_64, @count_65, @count_66, @count_67, @count_68, @count_69, @count_70, @count_71, @count_72, @count_73, @count_74, @count_75, @count_76, @count_77, @count_78, @count_79, @count_80, @count_81, @count_82, @count_83, @count_84, @count_85, @count_86, @count_87, @count_88, @count_89, @count_90, @count_91, @count_92, @count_93, @count_94, @count_95, @count_96, @count_97, @count_98, @count_99, @count_100, @count_101, @count_102, @count_103, @count_104, @count_105, @count_106, @count_107, @count_108, @count_109, @count_110, @count_111, @count_112, @count_113, @count_114, @count_115, @count_116, @count_117, @count_118, @count_119, @count_120, @count_121, @count_122, @count_123, @count_124, @count_125, @count_126, @count_127, @count_128, @count_129, @count_130, @count_131, @count_132, @count_133, @count_134, @count_135, @count_136, @count_137, @count_138, @count_139, @count_140, @count_141, @count_142, @count_143; END // DELIMITER ; show PROCEDURE status\G CALL usp_cmd_info("2016-10-20"); 上面的这段MySQL存储过程的语句非常长,不可能用手工输入,可以用下面的这段Python代码按所需的时间间隔自动生成: import datetime today = datetime.date.today() # 或 由给定格式字符串转换成 # today = datetime.datetime.strptime('2016-11-21', '%Y-%m-%d') min_today_time = datetime.datetime.combine(today, datetime.time.min) # 2016-11-21 00:00:00 max_today_time = datetime.datetime.combine(today, datetime.time.max) # 2016-11-21 23:59:59 sql_procedure_arr = [] sql_procedure_arr2 = [] for x in xrange(0, 60*24/5, 1): start_datetime = min_today_time + datetime.timedelta(minutes = 5*x) end_datetime = min_today_time + datetime.timedelta(minutes = 5*(x+1)) # print x, start_datetime.strftime("%Y-%m-%d %H:%M:%S"), end_datetime.strftime("%Y-%m-%d %H:%M:%S") select_str = 'SELECT count(*) from `cmd_info` where `time_str` BETWEEN "{0}" AND "{1}" INTO @count_{2};'.format(start_datetime, end_datetime, x) # print select_str sql_procedure_arr.append(select_str) sql_procedure_arr2.append('@count_{0}'.format(x)) print '\n'.join(sql_procedure_arr) print 'select {0};'.format(', '.join(sql_procedure_arr2))
Summary
The above is the entire content of the implementation method of MYSQL grouping statistics every 10 minutes, more For related content, please pay attention to the PHP Chinese website (www.php.cn)!

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于架构原理的相关内容,MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层,下面一起来看一下,希望对大家有帮助。

mysql的msi与zip版本的区别:1、zip包含的安装程序是一种主动安装,而msi包含的是被installer所用的安装文件以提交请求的方式安装;2、zip是一种数据压缩和文档存储的文件格式,msi是微软格式的安装包。

方法:1、利用right函数,语法为“update 表名 set 指定字段 = right(指定字段, length(指定字段)-1)...”;2、利用substring函数,语法为“select substring(指定字段,2)..”。

在mysql中,可以利用char()和REPLACE()函数来替换换行符;REPLACE()函数可以用新字符串替换列中的换行符,而换行符可使用“char(13)”来表示,语法为“replace(字段名,char(13),'新字符串') ”。

转换方法:1、利用cast函数,语法“select * from 表名 order by cast(字段名 as SIGNED)”;2、利用“select * from 表名 order by CONVERT(字段名,SIGNED)”语句。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于MySQL复制技术的相关问题,包括了异步复制、半同步复制等等内容,下面一起来看一下,希望对大家有帮助。

在mysql中,可以利用REGEXP运算符判断数据是否是数字类型,语法为“String REGEXP '[^0-9.]'”;该运算符是正则表达式的缩写,若数据字符中含有数字时,返回的结果是true,反之返回的结果是false。

在mysql中,是否需要commit取决于存储引擎:1、若是不支持事务的存储引擎,如myisam,则不需要使用commit;2、若是支持事务的存储引擎,如innodb,则需要知道事务是否自动提交,因此需要使用commit。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Atom editor mac version download
The most popular open source editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
