


Preface
pandas is a data analysis package built based on Numpy that contains more advanced data structures and tools. Similar to Numpy, whose core is ndarray, pandas also revolves around the two core data structures of Series and DataFrame. Series and DataFrame correspond to one-dimensional sequence and two-dimensional table structure respectively. The conventional import method of pandas is as follows:
from pandas import Series,DataFrame import pandas as pd
1.1. Pandas analysis steps
1. Load log data
2. Load area_ip data
3. Count the number of real_ip requests. Similar to the following SQL:
SELECT inet_aton(l.real_ip), count(*), a.addr FROM log AS l INNER JOIN area_ip AS a ON a.start_ip_num <= inet_aton(l.real_ip) AND a.end_ip_num >= inet_aton(l.real_ip) GROUP BY real_ip ORDER BY count(*) LIMIT 0, 100;
1.2. Code
cat pd_ng_log_stat.py #!/usr/bin/env python #-*- coding: utf-8 -*- from ng_line_parser import NgLineParser import pandas as pd import socket import struct class PDNgLogStat(object): def __init__(self): self.ng_line_parser = NgLineParser() def _log_line_iter(self, pathes): """解析文件中的每一行并生成一个迭代器""" for path in pathes: with open(path, 'r') as f: for index, line in enumerate(f): self.ng_line_parser.parse(line) yield self.ng_line_parser.to_dict() def _ip2num(self, ip): """用于IP转化为数字""" ip_num = -1 try: # 将IP转化成INT/LONG 数字 ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0]) except: pass finally: return ip_num def _get_addr_by_ip(self, ip): """通过给的IP获得地址""" ip_num = self._ip2num(ip) try: addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) & (ip_num <= self.ip_addr_df.ip_end_num)] addr = addr_df.at[addr_df.index.tolist()[0], 'addr'] return addr except: return None def load_data(self, path): """通过给的文件路径加载数据生成 DataFrame""" self.df = pd.DataFrame(self._log_line_iter(path)) def uv_real_ip(self, top = 100): """统计cdn ip量""" group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列 # 直接统计次数 url_req_grp = self.df[group_by_cols].groupby( self.df['real_ip']) return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count') def uv_real_ip_addr(self, top = 100): """统计real ip 地址量""" cnt_df = self.uv_real_ip(top) # 添加 ip 地址 列 cnt_df.insert(len(cnt_df.columns), 'addr', cnt_df.index.map(self._get_addr_by_ip)) return cnt_df def load_ip_addr(self, path): """加载IP""" cols = ['id', 'ip_start_num', 'ip_end_num', 'ip_start', 'ip_end', 'addr', 'operator'] self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id') return self.ip_addr_df def main(): file_pathes = ['www.ttmark.com.access.log'] pd_ng_log_stat = PDNgLogStat() pd_ng_log_stat.load_data(file_pathes) # 加载 ip 地址 area_ip_path = 'area_ip.csv' pd_ng_log_stat.load_ip_addr(area_ip_path) # 统计 用户真实 IP 访问量 和 地址 print pd_ng_log_stat.uv_real_ip_addr() if __name__ == '__main__': main()
Running statistics and output results
python pd_ng_log_stat.py count addr real_ip 60.191.123.80 101013 浙江省杭州市 - 32691 None 218.30.118.79 22523 北京市 ...... 136.243.152.18 889 德国 157.55.39.219 889 美国 66.249.65.170 888 美国 [100 rows x 2 columns]
Summary
The above is the entire content of this article. I hope that the content of this article will bring some help to everyone's study or work. If you have any questions, please You can leave messages to communicate.
For more detailed explanations of real IP request Pandas for Python data analysis, please pay attention to the PHP Chinese website!
Related articles:
How to read CSV files and write them to MySQL using Pandas in Python
Read cdn logs through the pandas library in Python Detailed analysis
Tutorial on using Python’s pandas framework to manipulate data in Excel files

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)