Home >Backend Development >Python Tutorial >python decorators
Contains:
1, decorators
2, functools
First, let’s take a look at the decorators used in tornado
1, @tornado.web.authenticated
citation
Decorate methods with this to require that the user be logged in.
Python code
def authenticated(method): """Decorate methods with this to require that the user be logged in.""" @functools.wraps(method) def wrapper(self, *args, **kwargs): if not self.current_user: if self.request.method in ("GET", "HEAD"): url = self.get_login_url() if "?" not in url: if urlparse.urlsplit(url).scheme: # if login url is absolute, make next absolute too next_url = self.request.full_url() else: next_url = self.request.uri url += "?" + urllib.urlencode(dict(next=next_url)) self.redirect(url) return raise HTTPError(403) return method(self, *args, **kwargs) return wrapper
The next code needs to verify the user login method. You can use this decorator. By using this decorator, you can simplify a lot of repeated verification code. You only need to add it to the method. Adding @tornado.web.authenticated is ok.
2. @tornado.web.asynchronous
Python code
def asynchronous(method): @functools.wraps(method) def wrapper(self, *args, **kwargs): if self.application._wsgi: raise Exception("@asynchronous is not supported for WSGI apps") self._auto_finish = False with stack_context.ExceptionStackContext( self._stack_context_handle_exception): return method(self, *args, **kwargs) return wrapper
This decorator will set self._auto_finish to False.
Next, let’s write a single-interest mode decorator:
Python code
def singleton(cls): instances = {} def get_instance(): if cls not in instances: instances[cls] = cls() return instances[cls] return get_instance @singleton class Foo: def __init__(self): pass class Bar: def __init__(self): pass f = Foo() m = Foo() print f,m,f == m a = Bar() b = Bar() print a,b,a == b
result is:
8a6b224b078d998433cded93a760c0c9 8a6b224b078d998433cded93a760c0c9 True
32af2be5a65ca092149d49cefab54e5c a1bc37471b8040d27d3b369e4ed7758e False
@singleton This decorator implements the singleton mode of the class, which ensures that the class will only be instantiated once.
Use decorators to verify parameters and method return results:
Python code
#-*-coding:utf-8-*- def accepts(*types): def check_accepts(f): # assert len(types) == f.func_code.co_argcount def new_f(*args, **kwds): for (a, t) in zip(args, types): assert isinstance(a, t), \ "arg %r does not match %s" % (a,t) return f(*args, **kwds) new_f.func_name = f.func_name return new_f return check_accepts def returns(rtype): def check_returns(f): def new_f(*args, **kwds): result = f(*args, **kwds) assert isinstance(result, rtype), \ "return value %r does not match %s" % (result,rtype) return result new_f.func_name = f.func_name return new_f return check_returns @accepts(int, (int,float)) @returns((int,float)) def func(arg1, arg2): return arg1 * arg2 print func(1,2.0)
Python code
def check_param_isvalid(): def check(method): def check_param(*args,**kwargs): for a in args: assert isinstance(a, int),"arg %r does not match %s" % (a,int) assert a > 100000,"arg %r must gt 100000" % a return method(*args, **kwargs) return check_param return check @check_param_isvalid() def foo(*args): print args foo(200000,5000)
result:
assert a > 100000,"arg %r must gt 100 000" % a
AssertionError: arg 5000 must gt 100000
Quote
Design Goals:
The new syntax should
* work for arbitrary wrappers, including user-defined callables and the existing builtins classmethod() and staticmethod() . This requirement also means that a decorator syntax must support passing arguments to the wrapper constructor
* work with multiple wrappers per definition
* make it obvious what is happening; at the very least it should be obvious that new users can safely ignore it when writing their own code
* be a syntax "that ... [is] easy to remember once explained"
* not make future extensions more difficult
* be easy to type; programs that use it are expected to use it very frequently
* not make it more difficult to scan through code quickly. It should still be easy to search for all definitions, a particular definition, or the arguments that a function accepts
* not needlessly complicate secondary support tools such as language-sensitive editors and other "toy parser tools out there [12]"
* allow future compilers to optimize for decorators. With the hope of a JIT compiler for Python coming into existence at some point this tends to require the syntax for decorators to come before the function definition
* move from the end of the function, where it's currently hidden, to the front where it is more in your face [13]