Home >Backend Development >Python Tutorial >Python decorators
There are many ways to write a custom decorator, but the simplest and easiest to understand is to write a function that returns a subfunction that encapsulates the original function call.
The general pattern is as follows.
Python code
def my_decorator(function): def _my_decorator(*args, **kw): #在调用实际函数之前做些填充工作 res = function(*args, **kw) #做完某些填充工作之后 return res #返回子函数 return _my_decorator
When the decorator requires parameters, the second level of encapsulation must be used.
Python code
def my_decorator(arg1, arg2): def _my_decorator(function): def __my_decorator(*args, **kw): res = function() return res return __my_decorator return _my_decorator
Quote
Because decorators are loaded by the interpreter when the module is first read, their use must be limited to the wrappers that can be applied overall. If a decorator is bound to a method's class or enhanced function signature, it should be refactored into a regular callable object to avoid complexity. In any case, when decorators handle APIs, a good approach is to gather them together in an easily maintainable module.
Parameter check:
Python code
def check_param_isvalid(): def check(method): def check_param(*args,**kwargs): for a in args: assert isinstance(a, int),"arg %r does not match %s" % (a,int) assert a > 100000,"arg %r must gt 100000" % a return method(*args, **kwargs) return check_param return check @check_param_isvalid() def foo(*args): print args foo(200000,500000)
Cache:
Python code
import time import hashlib import pickle cache = {} def is_obsolete(entry, duration): return time.time() - entry['time'] > duration def computer_key(function, args, kw): key = pickle.dumps((function.func_name, args, kw)) return hashlib.sha1(key).hexdigest() def memoize(duration=30): def _memoize(function): def __memoize(*args, **kw): key = computer_key(function, args, kw) if key in cache and not is_obsolete(cache[key], duration): print 'wo got a winner' return cache[key]['value'] result = function(*args, **kw) cache[key] = {'value':result,'time':time.time()} return result return __memoize return _memoize @memoize() def very_complex_stuff(a,b): return a + b print very_complex_stuff(2,2)
Proxy:
Python code
class User(object): def __init__(self, roles): self.roles = roles class Unauthorized(Exception): pass def protect(role): def _protect(function): def __protect(*args, **kw): user = globals().get('user') if user is None or role not in user.roles: raise Unauthorized("I won't tell you") return function(*args, **kw) return __protect return _protect tarek = User(('admin', 'user')) bill = User(('user',)) class MySecrets(object): @protect('admin') def waffle_recipe(self): print 'use tons of butter!' these_are = MySecrets() user = tarek these_are.waffle_recipe() user = bill these_are.waffle_recipe()
Context provided By:
Python code
from threading import RLock lock = RLock() def synchronized(function): def _synchronized(*args, **kw): lock.acquire() try: return function(*args, **kw) finally: lock.release() return _synchronized @synchronized def thread_safe(): print 'haha' thread_safe()