search
HomeWeb Front-endJS TutorialHow JavaScript timers work

How JavaScript timers work

Nov 25, 2016 am 09:15 AM
javascript

Before reading the following content, read a small piece of code. If the reader can tell the purpose of the code, there is no need to read further, because you will understand it.

setTimeout(function(){
/* Some long block of code… */
setTimeout(arguments.callee, 10);
}, 10);
setInterval(function(){
/* Some long block of code… */
}, 10);

The timer is a very cool thing, but many people only know its syntax and lack understanding of its principles. A timer executes a piece of code asynchronously by setting a certain period of time (milliseconds). Because Javascript is a single-threaded language, timers provide the ability to execute code around this language limitation.

Today I will briefly explain how the timer works.

JavaScript provides three functions to build and operate timers

1 var id = setTimeout(fn, delay);

2 var id = setInterval(fn, delay);

3 clearInterval(id); clearTimeout( id);

I won’t go into details about the specific syntax, you can check the manual. In order to understand how timers work, one concept must be kept in mind: time delays are not guaranteed. What does it mean? Just because you write setTimeout(fn, 500) like this does not mean that fn will definitely be executed immediately after 500 milliseconds. The delay is likely to be longer. Because JavaScript is a single-threaded language, all asynchronous events (including timers, mouse events, or the completion of an XMLHttpRequest) will only be executed when there is a gap during program execution. It does not mean that it will be executed when you specify it. You must know the program Users are not omnipotent, and what you write will ultimately depend on the browser.

The picture below can illustrate the problem very well, thank you to the great John Resig.

How JavaScript timers work

Looking from top to bottom, the numbers on the left represent time (milliseconds), the text on the right represents the setting and triggering of a series of asynchronous events, and the code block in the middle. The top JavaScript code block may be the fragment you execute when the browser loads, which takes about 18 milliseconds. The Mouse Click Callback code block immediately below may be your callback function when a mouse event is triggered, which takes about 18 milliseconds. 11 milliseconds, and so on.

The single-threaded nature of JavaScript determines that only one block can be executed at a time, so when the first block of code is executed (it ran for a total of 18 milliseconds), it constructed two timers, during which the user may have clicked the mouse. (Have you ever had a webpage get messed up as soon as it was opened before it finished loading?) It stands to reason that the callback function should be executed immediately after the user clicks the mouse, but no, there is only one lane for JavaScript execution. Before the 18 milliseconds are completed, other code blocks can only be queued up if they want to be executed, and there is no room for you to overtake. Both timers have a delay of 10 milliseconds. As you can see from the picture, setTimeout is also triggered before the end of the 18 millisecond execution. There is no way to queue it up.

Finally, 18 milliseconds later, a divine thunder from the sky split the car in front into thin air. The two people in line behind could pass, but they had to go one by one and couldn't be side by side. So who would go through first? Are two people punching each other there? No, the browser has the final say. The browser says that the mouse click event passes first, and setTimeout can only continue to wait for 11 milliseconds. Pay attention to the picture. When the mouse event callback function is executed, another timer event is triggered (setInterval), waiting, and must be ranked behind setTimeout.

11 milliseconds have passed, and setTimeout has finally passed. Note that setInterval is triggered for the second time. Although it was queued the first time, if it is still queued as usual at this time, what will happen in the end? SetTimeout is executed. After that, two setIntervals will be executed continuously, and the delay you set will be useless. Therefore, the browser is relatively smart. When it processes setInterval, if it finds that there is already a queued one, it will directly kill the new one.

Look next, it is the queued setInterval's turn to be triggered for the first time and start executing. When it is executed, the third trigger comes again. This time there is no queue, so the browser does not kill it and gives you a chance to queue. , so you will find that there is no interval between the execution of these two setIntervals. If you are making a slideshow, you should think carefully about whether there is a problem with your code when encountering this situation.

Finally, no other factors interfere with setInterval (if the user is called away by MM), setInterval will be executed according to the steps you want.

At this point, the code at the beginning can be understood.

setTimeout(function(){
/* Some long block of code… */
setTimeout(arguments.callee, 10);
}, 10);
setInterval(function(){
/* Some long block of code… */
}, 10);

These two functions seem to have the same effect, but they are not. The first code block will always be executed with a delay of 10 milliseconds, although most of the time it is greater than 10 milliseconds. The second one tries to execute every 10 milliseconds, regardless of whether the previous trigger has been executed.

In summary, four points

• The JavaScript engine has only one thread, which will force certain asynchronous events to be queued

• There is a big difference between setTimeout and setInterval when executing asynchronous code

• If a timer is blocked from executing, it Will wait until encountering a code execution gap, usually longer than expected

• Intervals may be executed one after another, if the execution time of the callback function is greater than the interval


Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js Streams with TypeScriptNode.js Streams with TypeScriptApr 30, 2025 am 08:22 AM

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

Python vs. JavaScript: Performance and Efficiency ConsiderationsPython vs. JavaScript: Performance and Efficiency ConsiderationsApr 30, 2025 am 12:08 AM

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.

The Origins of JavaScript: Exploring Its Implementation LanguageThe Origins of JavaScript: Exploring Its Implementation LanguageApr 29, 2025 am 12:51 AM

JavaScript originated in 1995 and was created by Brandon Ike, and realized the language into C. 1.C language provides high performance and system-level programming capabilities for JavaScript. 2. JavaScript's memory management and performance optimization rely on C language. 3. The cross-platform feature of C language helps JavaScript run efficiently on different operating systems.

Behind the Scenes: What Language Powers JavaScript?Behind the Scenes: What Language Powers JavaScript?Apr 28, 2025 am 12:01 AM

JavaScript runs in browsers and Node.js environments and relies on the JavaScript engine to parse and execute code. 1) Generate abstract syntax tree (AST) in the parsing stage; 2) convert AST into bytecode or machine code in the compilation stage; 3) execute the compiled code in the execution stage.

The Future of Python and JavaScript: Trends and PredictionsThe Future of Python and JavaScript: Trends and PredictionsApr 27, 2025 am 12:21 AM

The future trends of Python and JavaScript include: 1. Python will consolidate its position in the fields of scientific computing and AI, 2. JavaScript will promote the development of web technology, 3. Cross-platform development will become a hot topic, and 4. Performance optimization will be the focus. Both will continue to expand application scenarios in their respective fields and make more breakthroughs in performance.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools