search
HomeBackend DevelopmentPython TutorialIn-depth understanding of Python generators (Generator)

We can create a list simply and directly through list generation, but due to memory constraints, the list capacity is definitely limited. Moreover, creating a list containing 1 million elements not only takes up a lot of storage space, but if we only need to access the first few elements, the space occupied by most of the subsequent elements is wasted.

So, if the list elements can be calculated according to a certain algorithm, can we continuously calculate subsequent elements during the loop? This eliminates the need to create a complete list, saving a lot of space. In Python, this mechanism of looping and calculating at the same time is called a generator.

To create a generator, there are many ways. The first method is very simple. Just change the [] of a list generation expression to () to create a generator:

>>> mylist = [ x for x in range(1, 10)]
>>> mylist
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> gen = (x for x in range(1,10))
>>> gen
<generator object <genexpr> at 0x7f1d7fd0f5a0>

The only difference between creating mylist and gen is the outermost [] and (). Mylist is A list, and gen is a generator.

We can directly print out each element of the list, but how do we print out each element of the generator?

If you want to print them out one by one, you can use the next() method of the generator:

>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
3
...
>>> gen.next()
9
>>> gen.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

As we said, the generator saves the algorithm. Each time next() is called, the value of the next element is calculated until it is calculated. When the last element is the last element and there are no more elements, a StopIteration error is thrown.

In fact, we can use for loop instead of next() method, which is more in line with efficient programming ideas:

>>> gen = ( x for x in range(1, 10))
>>> for num in gen:
...     print num
... 
1
2
3
4
5
6
7
8
9

generator is very powerful. If the calculation algorithm is relatively complex and cannot be implemented using a for loop similar to list generation, you can also use a function to implement it.

For example, in the famous Fibonacci sequence, except for the first and second numbers, any number can be obtained by adding the first two numbers:

1, 1, 2, 3, 5 , 8, 13, 21, 34, ...

The Fibonacci sequence cannot be written using list generation, but it is easy to print it out using a function:

def fib(max):
    n = 0 
    a, b = 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

The above function can output Fibonacci The first N numbers of the Fibonacci sequence:

>>> fib(6)

If you look closely, you can see that the fib function actually defines the calculation rules of the Fibonacci sequence. You can start from the first element and calculate any subsequent elements. This This logic is actually very similar to generator.

In other words, the above function is only one step away from the generator. To turn the fib function into a generator, just change print b to yield b:

def fib(max):
    n = 0 
    a, b = 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1

This is another way to define a generator. If a function definition contains the yield keyword, then the function is no longer an ordinary function, but a generator:

>>> fib(6)

Here, the most difficult thing to understand is that the execution processes of generators and functions are different. Functions are executed sequentially and return when encountering a return statement or the last line of function statements. The function that becomes a generator is executed every time next() is called, returns when encountering a yield statement, and continues execution from the yield statement returned last time when executed again.

As a simple example, define a generator that returns the numbers 1, 3, and 5 in sequence:

>>> def odd():
...     print &#39;step 1&#39;
...     yield 1
...     print &#39;step 2&#39;
...     yield 3
...     print &#39;step 3&#39;
...     yield 5
...
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

You can see that odd is not an ordinary function, but a generator. During the execution process, it will interrupt when it encounters yield. Next time And continue to execute. After executing yield three times, there is no more yield to execute, so an error is reported when next() is called for the fourth time.

Back to the fib example, if we keep calling yield during the loop, it will continue to be interrupted. Of course, you need to set a condition for the loop to exit the loop, otherwise an infinite number will be listed.

Similarly, after changing the function to generator, we basically never use next() to call it, but directly use the for loop to iterate:

>>> for n in fib(6):
...     print n
...

generator is a very powerful tool. In Python, you can Simply change the list generation into a generator, or you can also implement complex logic generators through functions.

To understand the working principle of the generator, it continuously calculates the next element during the for loop and ends the for loop under appropriate conditions. For a generator changed from a function, when the return statement is encountered or the last line of the function body is executed, it is the instruction to end the generator, and the for loop ends accordingly.

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.