π is a truly magical number followed by countless people. I'm not quite sure what's so fascinating about an irrational number that repeats itself forever. In my opinion, I enjoy calculating π, that is, calculating the value of π. Because π is an irrational number, it is infinite. This means that any calculation of π is only an approximation. If you calculate 100 digits, I can calculate 101 digits and be more precise. So far, some have singled out supercomputers to try to calculate the most accurate π. Some extreme values include calculating 500 million digits of pi. You can even find a text file online containing 10 billion digits of π (be careful! This file may take a while to download, and it won't open with your usual Notepad application.). For me, how to calculate π with a few simple lines of Python is what interests me.
You can always use the math.pi variable. It is included in the standard library and you should use it before trying to calculate it yourself. In fact, we will use it to calculate accuracy. To start, let's look at a very straightforward method of calculating Pi. As usual, I'll be using Python 2.7, the same ideas and code may apply to different versions. Most of the algorithms we will use are taken from and implemented on the Pi WikiPedia page. Let’s take a look at the code below:
importsys importmath defmain(argv): iflen(argv) !=1: sys.exit('Usage: calc_pi.py <n>') print'\nComputing Pi v.01\n' a=1.0 b=1.0/math.sqrt(2) t=1.0/4.0 p=1.0 foriinrange(int(sys.argv[1])): at=(a+b)/2 bt=math.sqrt(a*b) tt=t-p*(a-at)**2 pt=2*p a=at;b=bt;t=tt;p=pt my_pi=(a+b)**2/(4*t) accuracy=100*(math.pi-my_pi)/my_pi print"Pi is approximately: "+str(my_pi) print"Accuracy with math.pi: "+str(accuracy) if__name__=="__main__": main(sys.argv[1:])
This is a very simple script that you can download, run, modify, and share with others as you like. You can see output similar to the following:
You will find that even though n is greater than 4, the accuracy of our approximation to Pi does not improve much. We can guess that even if the value of n is larger, the same thing (the approximation accuracy of pi is not improved) will still happen. Luckily, there's more than one way to solve this mystery. Using the Python Decimal (decimal) library, we can get higher-precision values to approximate Pi. Let's see how the library functions are used. This simplified version can get numbers with more than 11 digits usually less precision than given by Python floating point numbers. Here's an example from the Python Decimal library:
See these numbers. wrong! We only entered 3.14, why did we get some junk? This is memory junk. In a nutshell, Python gives you the decimal number you want, plus a little extra value. It does not affect any calculations as long as the accuracy is less than the previous junk number at the beginning. You can specify how many digits you want by setting getcontext().prec. Let's try.
Very good. Now let's try using this to see if we can get a better approximation to our previous code. Now, I'm usually against using " from library import * ", but in this case it makes the code look prettier.
importsys importmath fromdecimalimport* defmain(argv): iflen(argv) !=1: sys.exit('Usage: calc_pi.py <n>') print'\nComputing Pi v.01\n' a=Decimal(1.0) b=Decimal(1.0/math.sqrt(2)) t=Decimal(1.0)/Decimal(4.0) p=Decimal(1.0) foriinrange(int(sys.argv[1])): at=Decimal((a+b)/2) bt=Decimal(math.sqrt(a*b)) tt=Decimal(t-p*(a-at)**2) pt=Decimal(2*p) a=at;b=bt;t=tt;p=pt my_pi=(a+b)**2/(4*t) accuracy=100*(Decimal(math.pi)-my_pi)/my_pi print"Pi is approximately: "+str(my_pi) print"Accuracy with math.pi: "+str(accuracy) if__name__=="__main__": main(sys.argv[1:])
Output result:
Okay. We're more accurate, but it looks like there's some rounding. From n = 100 and n = 1000, we have the same accuracy. What should we do now? Okay, now let's turn to formulas. So far, the way we've calculated Pi is by adding its parts together. I found some code from DAN's article on Calculating Pi. He suggested that we use the following 3 formulas:
Bailey–Borwein–Plouffe formula
Bellard’s formula
Chudnovsky algorithm
Let’s start with the Bailey–Borwein–Plouffe formula. It looks like this:
In code we can write it like this:
import sys import math from decimal import * def bbp(n): pi=Decimal(0) k=0 while k < n: pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6))) k+=1 return pi def main(argv): if len(argv) !=2: sys.exit('Usage: BaileyBorweinPlouffe.py <prec> <n>') getcontext().prec=(int(sys.argv[1])) my_pi=bbp(int(sys.argv[2])) accuracy=100*(Decimal(math.pi)-my_pi)/my_pi print"Pi is approximately "+str(my_pi) print"Accuracy with math.pi: "+str(accuracy) if __name__=="__main__": main(sys.argv[1:])
Leaving aside the "wrapper" code, the function of BBP(N) is what you really want. The larger N you give it and the larger value you set to getcontext().prec, the more precise you will make the calculation. Let's look at some code results:
That's a lot of digital bits. You can see that we're no more accurate than before. So we need to move on to the next formula, Bellah's formula, and hopefully get better accuracy. It will look like this:
We will only change our transform formula, the rest of the code will remain the same. Click here to download Bella's formula implemented in Python. Let’s take a look at bellards(n):
def bellard(n): pi=Decimal(0) k=0 while k < n: pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3)) k+=1 pi=pi*1/(2**6) return pi
Output:
哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:
再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。
下面是程序和输出结果:
def chudnovsky(n): pi=Decimal(0) k=0 while k < n: pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k))) k+=1 pi=pi*Decimal(10005).sqrt()/4270934400 pi=pi**(-1) return pi
所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
