Problem Description
One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again...
Hello Kiki is such a lovely girl that she loves doing counting in a different way. For example, when she is counting X coins, she count them N times. Each time she divide the coins into several same sized groups and write down the group size Mi and the number of the remaining coins Ai on her note.
One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.
Input
The first line is T indicating the number of test cases.
Each case contains N on the first line, Mi(1
All numbers in the input and output are integers.
1
Output
For each case output the least positive integer X which Kiki was counting in the sample output format. If there is no solution then output -1.
Sample Input
2
2
14 57
5 56
5
19 54 40 24 80
11 2 36 20 76
Sample Output
Case 1: 341
Case 2: 5996
Question meaning: Give you a variety of different ways to count money, and find the minimum amount of money that meets the requirements.
Idea: At first glance, it seems to be a question about the Chinese Remainder Theorem, but the modulus of this question is not necessarily pairwise reciprocal prime. Therefore, it can be done by solving the system of modular linear equations, which requires understanding the extended Euclidean algorithm. Let's talk about the method of solving the system of modular linear equations. The idea is: continue to combine the two to obtain. We can first find two congruence equations and let the general solution be N, N=r1(mod(m1)), N=r2(mod(m2)), which can obviously be converted into k1*m1+r1=k2*m2+r2 ;--->k1*m1+(-k2*m2)=r2-r1; Assume a=m1,b=m2,x=k1,y=(-k2),c=r2-r1 equation can be written as ax +by=c; just solve x by extended Euclid, then turn x into the smallest positive integer solution of the original equation, (x*(c/d)%(b/d)+(b/d) )%(b/d); then this x is the smallest integer solution of the original equation. So N=a*(x+n*(b/d))+r1====N=(a*b/d)*n+(a*x+r1), here only n is the unknown number, so it is another The formula of N=(a*x+r1)(mod(a*b/d)), and then as long as you continue to turn the two formulas into one formula, you can finally solve the solution of this system of equations
AC code:
[cpp]
#include
#include
#include
#include
#define N 7
using namespace std;
int M[N],A[N];
int Gcd(int a,int b)
{return b==0?a:Gcd(b,a%b);}
void gcd(int a,int b,int &d,int &x,int &y)
{
If(!b) x=1,y=0,d=a;
else gcd(b,a%b,d,y,x),y-=a/b*x;
}
int main()
{
int T;
Scanf("%d",&T);
for(int k=1;k
{
int n;
scanf("%d",&n);
for(int i=0;i!=n;++i) scanf("%d",&M[i]);
for(int i=0;i!=n;++i) scanf("%d",&A[i]);
int x,y,d;
int a=M[0],c1=A[0];
bool flag=false;
for(int i=1;i
int c=A[i]-c1;
gcd(a,b,d,x,y);
If(c%d){flag=true;break;}
int r=b/d;
x=(c/d*x%r+r)%r;
c1=a*x+c1;
a=a*r;
}
If(flag) printf("Case %d: -1n",k);
else
int ans=1;
If(c1==0)//Special case when all remainders are 0
for(int i=0;i!=n;++i)
ans=M[i]/Gcd(ans,M[i])*ans;
printf("Case %d: %dn",k,ans);
else printf("Case %d: %dn",k,c1);
}
}return 0;
}
Author: smallacmer

Springboot内置tomcat禁止不安全HTTP方法1、在tomcat的web.xml中可以配置如下内容让tomcat禁止不安全的HTTP方法/*PUTDELETEHEADOPTIONSTRACEBASIC2、Springboot使用内置tomcat没有web.xml配置文件,可以通过以下配置进行,简单来说就是要注入到Spring容器中@ConfigurationpublicclassTomcatConfig{@BeanpublicEmbeddedServletContainerFacto

1.HttpURLConnection使用JDK原生提供的net,无需其他jar包,代码如下:importcom.alibaba.fastjson.JSON;importjava.io.BufferedReader;importjava.io.InputStream;importjava.io.InputStreamReader;importjava.io.OutputStream;importjava.net.HttpURLConnection;

一、前言#ssl写在443端口后面。这样http和https的链接都可以用listen443sslhttp2default_server;server_namechat.chengxinsong.cn;#hsts的合理使用,max-age表明hsts在浏览器中的缓存时间,includesubdomainscam参数指定应该在所有子域上启用hsts,preload参数表示预加载,通过strict-transport-security:max-age=0将缓存设置为0可以撤销hstsadd_head

随着互联网的不断发展和改善,Web服务器在速度和性能上的需求也越来越高。为了满足这样的需求,Nginx已经成功地掌握了HTTP2协议并将其融入其服务器的性能中。HTTP2协议要比早期的HTTP协议更加高效,但同时也存在着特定的安全问题。本文将为您详细介绍如何进行Nginx的HTTP2协议优化和安全设置。一、Nginx的HTTP2协议优化1.启用HTTP2在N

httpkeepalive在http早期,每个http请求都要求打开一个tpcsocket连接,并且使用一次之后就断开这个tcp连接。使用keep-alive可以改善这种状态,即在一次tcp连接中可以持续发送多份数据而不会断开连接。通过使用keep-alive机制,可以减少tcp连接建立次数,也意味着可以减少time_wait状态连接,以此提高性能和提高httpd服务器的吞吐率(更少的tcp连接意味着更少的系统内核调用,socket的accept()和close()调用)。但是,keep-ali

一、urllib概述:urllib是Python中请求url连接的官方标准库,就是你安装了python,这个库就已经可以直接使用了,基本上涵盖了基础的网络请求功能。在Python2中主要为urllib和urllib2,在Python3中整合成了urllib。Python3.x中将urllib2合并到了urllib,之后此包分成了以下四个模块:urllib.request:它是最基本的http请求模块,用来模拟发送请求urllib.error:异常处理模块,如果出现错误可以捕获这些异常urllib

被动检查对于被动健康检查,nginx和nginxplus会在事件发生时对其进行监控,并尝试恢复失败的连接。如果仍然无法恢复正常,nginx开源版和nginxplus会将服务器标记为不可用,并暂时停止向其发送请求,直到它再次标记为活动状态。上游服务器标记为不可用的条件是为每个上游服务器定义的,其中包含块中server指令的参数upstream:fail_timeout-设置服务器标记为不可用时必须进行多次失败尝试的时间,以及服务器标记为不可用的时间(默认为10秒)。max_fails-设置在fai

一、概述在实际开发过程中,我们经常需要调用对方提供的接口或测试自己写的接口是否合适。很多项目都会封装规定好本身项目的接口规范,所以大多数需要去调用对方提供的接口或第三方接口(短信、天气等)。在Java项目中调用第三方接口的方式有:1、通过JDK网络类Java.net.HttpURLConnection;2、通过common封装好的HttpClient;3、通过Apache封装好的CloseableHttpClient;4、通过SpringBoot-RestTemplate;二、Java调用第三方


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
