search
HomeBackend DevelopmentPython TutorialIn-depth analysis of the role and usage of descriptors in Python

Generally speaking, a descriptor is an object attribute with "binding behavior", and its access control is overridden by the descriptor protocol method. These methods are __get__(), __set__(), and __delete__(). Objects with these methods are called descriptors.

The default access control for attributes is to get (get), set (set) and delete (delete) it from the object's dictionary (__dict__). For example, the search order for a.x is, a.__dict__['x'], then type(a).__dict__['x'], then find the parent class of type(a) (excluding metaclass) .If the value found is a descriptor, Python will call the descriptor's method to override the default control behavior. Where in the lookup phase this overriding occurs depends on which descriptor method is defined. Note that descriptors only work when inside a new-style class. (New-style classes are classes that inherit from type or object)

Descriptors are powerful and widely used. Descriptors are the mechanism behind properties, instance methods, static methods, class methods, and super. Descriptors are used extensively in Python itself to implement the new-style classes introduced in Python 2.2. Descriptors simplify the underlying C code and provide a flexible new set of tools for everyday programming in Python.

Descriptor Protocol

descr.__get__(self, obj, type=None) --> value
descr.__get__(self, obj, value) --> None
descr.__delete__(self, obj) --> None

Override the default search behavior when an object is a descriptor and is treated as an object property (very important).

If an object defines both __get__ and __set__, it is called data descriptor. A descriptor that only defines __get__ is called a non-data descriptor.

The difference between data descriptor and non-data descriptor is: the priority relative to the dictionary of the instance. If the instance dictionary has an attribute with the same name as the description device, and if the descriptor is a data descriptor, the data descriptor will be used first. If it is a non-data descriptor, the attributes in the dictionary will be used first.

class B(object):

  def __init__(self):
    self.name = 'mink'

  def __get__(self, obj, objtype=None):
    return self.name

class A(object):
  name = B()

a = A()
print a.__dict__  # print {}
print a.name    # print mink
a.name = 'kk'    
print a.__dict__  # print {'name': 'kk'}
print a.name    # print kk

Here B is a non-data descriptor, so when a.name = 'kk', there will be a name attribute in a.__dict__. Next, set it __set__

def __set__(self, obj, value):
  self.name = value

 ... do something

a = A()
print a.__dict__  # print {}
print a.name    # print mink
a.name = 'kk'    
print a.__dict__  # print {}
print a.name    # print kk

Because the data descriptor has a higher priority for accessing attributes than the instance's dictionary, a.__dict__ is empty.

Descriptor call
The descriptor can be called directly like this: d.__get__(obj)

However, a more common situation is that the descriptor is automatically called when the property is accessed. For example, obj.d will look for d in the dictionary of obj. If d defines the __get__ method, then d.__get__(obj) will be called according to the following precedence rules.

The details of the call depend on whether obj is a class or an instance. In addition, descriptors only work for new-style objects and new-style classes. Classes that inherit from object are called new-style classes.

For objects, the method object.__getattribute__() turns b.x into type(b).__dict__['x'].__get__(b, type(b)) . The specific implementation is based on this priority order: data descriptors take precedence over instance variables, instance variables take precedence over non-data descriptors, and the __getattr__() method (if included in the object) has the lowest priority. The complete C language implementation can be viewed in PyObject_GenericGetAttr() in Objects/object.c.

For classes, the method type.__getattribute__() turns B.x into B.__dict__['x'].__get__(None, B) . To describe it in Python is:

def __getattribute__(self, key):
  "Emulate type_getattro() in Objects/typeobject.c"
  v = object.__getattribute__(self, key)
  if hasattr(v, '__get__'):
    return v.__get__(None, self)
  return v

A few important points:

  • The descriptor is called because of __getattribute__()
  • Overriding the __getattribute__() method will prevent normal descriptor calls
  • __getattribute__() is only available for instances of new-style classes
  • Object.__getattribute__() and type.__getattribute__() call __get__() differently
  • Data descriptors always take precedence over instance dictionaries.
  • Non-data descriptors may be overridden by instance dictionaries. (Non-data descriptors take precedence over instance dictionaries)
  • The object returned by super() also has a customized __getattribute__() method for calling the descriptor. When calling super(B, obj).m(), it will first search for the base class A immediately adjacent to B in obj.__class__.__mro__, and then return A.__dict__['m'].__get__(obj, A). If not a descriptor, m is returned unchanged. If m is not found in the instance dictionary, it will backtrack and continue to call object.__getattribute__() to search. (Translator’s Note: Search in the next base class in __mro__)

Note: In Python 2.2, if m is a descriptor, super(B, obj).m() will only call the method __get__() . In Python 2.3, non-data descriptors (unless it is an old-style class) will also be called. The implementation details of super_getattro() are in: Objects/typeobject.c, [del] An equivalent Python implementation is in Guido's Tutorial [/del] (Translator's Note: The original sentence has been deleted and is retained for your reference).

The above shows that the mechanism of the descriptor is implemented in the __getattribute__() method of object, type, and super. Classes derived from object automatically inherit this mechanism, or they have a metaclass with a similar mechanism. Likewise, a class's __getattribute__() method can be overridden to turn off the descriptor behavior for this class.

描述器例子
下面的代码中定义了一个资料描述器,每次 get 和 set 都会打印一条消息。重写 __getattribute__() 是另一个可以使所有属性拥有这个行为的方法。但是,描述器在监视特定属性的时候是很有用的。

class RevealAccess(object):
  """A data descriptor that sets and returns values
    normally and prints a message logging their access.
  """

  def __init__(self, initval=None, name='var'):
    self.val = initval
    self.name = name

  def __get__(self, obj, objtype):
    print 'Retrieving', self.name
    return self.val

  def __set__(self, obj, val):
    print 'Updating' , self.name
    self.val = val

>>> class MyClass(object):
  x = RevealAccess(10, 'var "x"')
  y = 5

>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5

这个协议非常简单,并且提供了令人激动的可能。一些用途实在是太普遍以致于它们被打包成独立的函数。像属性(property), 方法(bound和unbound method), 静态方法和类方法都是基于描述器协议的。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool