search
HomeBackend DevelopmentPython TutorialIn-depth analysis of the role and usage of descriptors in Python

Generally speaking, a descriptor is an object attribute with "binding behavior", and its access control is overridden by the descriptor protocol method. These methods are __get__(), __set__(), and __delete__(). Objects with these methods are called descriptors.

The default access control for attributes is to get (get), set (set) and delete (delete) it from the object's dictionary (__dict__). For example, the search order for a.x is, a.__dict__['x'], then type(a).__dict__['x'], then find the parent class of type(a) (excluding metaclass) .If the value found is a descriptor, Python will call the descriptor's method to override the default control behavior. Where in the lookup phase this overriding occurs depends on which descriptor method is defined. Note that descriptors only work when inside a new-style class. (New-style classes are classes that inherit from type or object)

Descriptors are powerful and widely used. Descriptors are the mechanism behind properties, instance methods, static methods, class methods, and super. Descriptors are used extensively in Python itself to implement the new-style classes introduced in Python 2.2. Descriptors simplify the underlying C code and provide a flexible new set of tools for everyday programming in Python.

Descriptor Protocol

descr.__get__(self, obj, type=None) --> value
descr.__get__(self, obj, value) --> None
descr.__delete__(self, obj) --> None

Override the default search behavior when an object is a descriptor and is treated as an object property (very important).

If an object defines both __get__ and __set__, it is called data descriptor. A descriptor that only defines __get__ is called a non-data descriptor.

The difference between data descriptor and non-data descriptor is: the priority relative to the dictionary of the instance. If the instance dictionary has an attribute with the same name as the description device, and if the descriptor is a data descriptor, the data descriptor will be used first. If it is a non-data descriptor, the attributes in the dictionary will be used first.

class B(object):

  def __init__(self):
    self.name = 'mink'

  def __get__(self, obj, objtype=None):
    return self.name

class A(object):
  name = B()

a = A()
print a.__dict__  # print {}
print a.name    # print mink
a.name = 'kk'    
print a.__dict__  # print {'name': 'kk'}
print a.name    # print kk

Here B is a non-data descriptor, so when a.name = 'kk', there will be a name attribute in a.__dict__. Next, set it __set__

def __set__(self, obj, value):
  self.name = value

 ... do something

a = A()
print a.__dict__  # print {}
print a.name    # print mink
a.name = 'kk'    
print a.__dict__  # print {}
print a.name    # print kk

Because the data descriptor has a higher priority for accessing attributes than the instance's dictionary, a.__dict__ is empty.

Descriptor call
The descriptor can be called directly like this: d.__get__(obj)

However, a more common situation is that the descriptor is automatically called when the property is accessed. For example, obj.d will look for d in the dictionary of obj. If d defines the __get__ method, then d.__get__(obj) will be called according to the following precedence rules.

The details of the call depend on whether obj is a class or an instance. In addition, descriptors only work for new-style objects and new-style classes. Classes that inherit from object are called new-style classes.

For objects, the method object.__getattribute__() turns b.x into type(b).__dict__['x'].__get__(b, type(b)) . The specific implementation is based on this priority order: data descriptors take precedence over instance variables, instance variables take precedence over non-data descriptors, and the __getattr__() method (if included in the object) has the lowest priority. The complete C language implementation can be viewed in PyObject_GenericGetAttr() in Objects/object.c.

For classes, the method type.__getattribute__() turns B.x into B.__dict__['x'].__get__(None, B) . To describe it in Python is:

def __getattribute__(self, key):
  "Emulate type_getattro() in Objects/typeobject.c"
  v = object.__getattribute__(self, key)
  if hasattr(v, '__get__'):
    return v.__get__(None, self)
  return v

A few important points:

  • The descriptor is called because of __getattribute__()
  • Overriding the __getattribute__() method will prevent normal descriptor calls
  • __getattribute__() is only available for instances of new-style classes
  • Object.__getattribute__() and type.__getattribute__() call __get__() differently
  • Data descriptors always take precedence over instance dictionaries.
  • Non-data descriptors may be overridden by instance dictionaries. (Non-data descriptors take precedence over instance dictionaries)
  • The object returned by super() also has a customized __getattribute__() method for calling the descriptor. When calling super(B, obj).m(), it will first search for the base class A immediately adjacent to B in obj.__class__.__mro__, and then return A.__dict__['m'].__get__(obj, A). If not a descriptor, m is returned unchanged. If m is not found in the instance dictionary, it will backtrack and continue to call object.__getattribute__() to search. (Translator’s Note: Search in the next base class in __mro__)

Note: In Python 2.2, if m is a descriptor, super(B, obj).m() will only call the method __get__() . In Python 2.3, non-data descriptors (unless it is an old-style class) will also be called. The implementation details of super_getattro() are in: Objects/typeobject.c, [del] An equivalent Python implementation is in Guido's Tutorial [/del] (Translator's Note: The original sentence has been deleted and is retained for your reference).

The above shows that the mechanism of the descriptor is implemented in the __getattribute__() method of object, type, and super. Classes derived from object automatically inherit this mechanism, or they have a metaclass with a similar mechanism. Likewise, a class's __getattribute__() method can be overridden to turn off the descriptor behavior for this class.

描述器例子
下面的代码中定义了一个资料描述器,每次 get 和 set 都会打印一条消息。重写 __getattribute__() 是另一个可以使所有属性拥有这个行为的方法。但是,描述器在监视特定属性的时候是很有用的。

class RevealAccess(object):
  """A data descriptor that sets and returns values
    normally and prints a message logging their access.
  """

  def __init__(self, initval=None, name='var'):
    self.val = initval
    self.name = name

  def __get__(self, obj, objtype):
    print 'Retrieving', self.name
    return self.val

  def __set__(self, obj, val):
    print 'Updating' , self.name
    self.val = val

>>> class MyClass(object):
  x = RevealAccess(10, 'var "x"')
  y = 5

>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5

这个协议非常简单,并且提供了令人激动的可能。一些用途实在是太普遍以致于它们被打包成独立的函数。像属性(property), 方法(bound和unbound method), 静态方法和类方法都是基于描述器协议的。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Merging Lists in Python: Choosing the Right MethodMerging Lists in Python: Choosing the Right MethodMay 14, 2025 am 12:11 AM

TomergelistsinPython,youcanusethe operator,extendmethod,listcomprehension,oritertools.chain,eachwithspecificadvantages:1)The operatorissimplebutlessefficientforlargelists;2)extendismemory-efficientbutmodifiestheoriginallist;3)listcomprehensionoffersf

How to concatenate two lists in python 3?How to concatenate two lists in python 3?May 14, 2025 am 12:09 AM

In Python 3, two lists can be connected through a variety of methods: 1) Use operator, which is suitable for small lists, but is inefficient for large lists; 2) Use extend method, which is suitable for large lists, with high memory efficiency, but will modify the original list; 3) Use * operator, which is suitable for merging multiple lists, without modifying the original list; 4) Use itertools.chain, which is suitable for large data sets, with high memory efficiency.

Python concatenate list stringsPython concatenate list stringsMay 14, 2025 am 12:08 AM

Using the join() method is the most efficient way to connect strings from lists in Python. 1) Use the join() method to be efficient and easy to read. 2) The cycle uses operators inefficiently for large lists. 3) The combination of list comprehension and join() is suitable for scenarios that require conversion. 4) The reduce() method is suitable for other types of reductions, but is inefficient for string concatenation. The complete sentence ends.

Python execution, what is that?Python execution, what is that?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingPythoncodeintoexecutableinstructions.1)Theinterpreterreadsthecode,convertingitintobytecode,whichthePythonVirtualMachine(PVM)executes.2)TheGlobalInterpreterLock(GIL)managesthreadexecution,potentiallylimitingmul

Python: what are the key featuresPython: what are the key featuresMay 14, 2025 am 12:02 AM

Key features of Python include: 1. The syntax is concise and easy to understand, suitable for beginners; 2. Dynamic type system, improving development speed; 3. Rich standard library, supporting multiple tasks; 4. Strong community and ecosystem, providing extensive support; 5. Interpretation, suitable for scripting and rapid prototyping; 6. Multi-paradigm support, suitable for various programming styles.

Python: compiler or Interpreter?Python: compiler or Interpreter?May 13, 2025 am 12:10 AM

Python is an interpreted language, but it also includes the compilation process. 1) Python code is first compiled into bytecode. 2) Bytecode is interpreted and executed by Python virtual machine. 3) This hybrid mechanism makes Python both flexible and efficient, but not as fast as a fully compiled language.

Python For Loop vs While Loop: When to Use Which?Python For Loop vs While Loop: When to Use Which?May 13, 2025 am 12:07 AM

Useaforloopwheniteratingoverasequenceorforaspecificnumberoftimes;useawhileloopwhencontinuinguntilaconditionismet.Forloopsareidealforknownsequences,whilewhileloopssuitsituationswithundeterminediterations.

Python loops: The most common errorsPython loops: The most common errorsMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops,modifyinglistsduringiteration,off-by-oneerrors,zero-indexingissues,andnestedloopinefficiencies.Toavoidthese:1)Use'i

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool