Home  >  Article  >  Web Front-end  >  Codeforces Round #258 (Div. 2) B. Jzzhu and Sequences (Quick Power of Matrix)_html/css_WEB-ITnose

Codeforces Round #258 (Div. 2) B. Jzzhu and Sequences (Quick Power of Matrix)_html/css_WEB-ITnose

WBOY
WBOYOriginal
2016-06-24 12:01:33823browse

题目链接:http://codeforces.com/problemset/problem/450/B

----------------------------------------------------------------------------------------------------------------------------------------------------------
欢迎光临天资小屋:http://user.qzone.qq.com/593830943/main
----------------------------------------------------------------------------------------------------------------------------------------------------------


B. Jzzhu and Sequences

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Jzzhu has invented a kind of sequences, they meet the following property:

You are given x and y, please calculate fn modulo 1000000007 (109? ?7).

Input

The first line contains two integers x and y (|x|,?|y|?≤?109). The second line contains a single integer n (1?≤?n?≤?2·109).

Output

Output a single integer representing fn modulo 1000000007 (109? ?7).

Sample test(s)

input

2 33

output

input

0 -12

output

1000000006

Note

In the first sample, f2?=?f1? ?f3, 3?=?2? ?f3, f3?=?1.

In the second sample, f2?=??-?1; ?-?1 modulo (109? ?7) equals (109? ?6).


代码如下:

#include <iostream>#include <cstdio>#include <cstring>using namespace std;struct A{    int mat[2][2];};A d,f;__int64 n,mod;A mul(A a,A b){    A t;    memset(t.mat,0,sizeof(t.mat));    for(int i=0;i<n;i++)    {        for(int k=0;k<n;k++)        {            if(a.mat[i][k])                for(int j=0;j<n;j++)                {                    t.mat[i][j]+=a.mat[i][k]*b.mat[k][j];                    t.mat[i][j]%=mod;                }        }    }    return t;}A quickP(int k){    A p = d ,m;    memset(m.mat,0,sizeof(m.mat));    for(int i=0;i<n;++i)//单位矩阵    {        m.mat[i][i]=1;    }    while(k)    {        if(k & 1)            m=mul(m,p);        p=mul(p,p);        k >>= 1 ;    }    return m;}int main(){    n=2;    int k,t;__int64 x,y,z;    while(scanf("%I64d%I64d",&x,&y)!=EOF)    {        int s=0;        scanf("%I64d",&z);        mod=1000000007;        if(z == 1)        {            if(x < 0)                printf("%I64d\n",x+mod);            else                printf("%I64d\n",x);            continue;        }        d.mat[0][1]=-1;d.mat[1][1] = 0;        d.mat[0][0]=d.mat[1][0]=1;        A ret=quickP(z-2);//z-2 乘的次数        __int64 ans=(ret.mat[0][0]*y%mod+ret.mat[0][1]*x%mod)%mod;        if(ans < 0)            ans+=mod;        printf("%I64d\n",ans);    }    return 0;}


Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn