Home >Web Front-end >HTML Tutorial >CF#277 (Div. 2) B.(Preprocessing)_html/css_WEB-ITnose

CF#277 (Div. 2) B.(Preprocessing)_html/css_WEB-ITnose

WBOY
WBOYOriginal
2016-06-24 11:54:151069browse

B. OR in Matrix

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

题目链接: http://codeforces.com/contest/486/problem/B

Let's define logical OR as an operation on two logical values (i. e. values that belong to the set {0,?1}) that is equal to 1 if either or both of the logical values is set to 1, otherwise it is 0. We can define logical OR of three or more logical values in the same manner:

 where  is equal to 1 if some ai?=?1, otherwise it is equal to 0.

Nam has a matrix A consisting of m rows and n columns. The rows are numbered from 1 to m, columns are numbered from 1 to n. Element at row i (1?≤?i?≤?m) and column j (1?≤?j?≤?n) is denoted as Aij. All elements of A are either 0 or 1. From matrix A, Nam creates another matrix B of the same size using formula:

.

(Bij is OR of all elements in row i and column j of matrix A)

Nam gives you matrix B and challenges you to guess matrix A. Although Nam is smart, he could probably make a mistake while calculating matrix B, since size of A can be large.

Input

The first line contains two integer m and n (1?≤?m,?n?≤?100), number of rows and number of columns of matrices respectively.

The next m lines each contain n integers separated by spaces describing rows of matrix B (each element of B is either 0 or 1).

Output

In the first line, print "NO" if Nam has made a mistake when calculating B, otherwise print "YES". If the first line is "YES", then also print mrows consisting of n integers representing matrix A that can produce given matrix B. If there are several solutions print any one.

Sample test(s)

input

2 21 00 0

output

NO

input

2 31 1 11 1 1

output

YES1 1 11 1 1

input

2 30 1 01 1 1

output

YES0 0 00 1 0
解题思路:
	题目大意就是给你m和n,接下来输入m*n的B矩阵,问是否存在一个m*n的A矩阵,使得对于Bij这个元素来说,它是由A矩阵的第i行所有元素和第j列所有元素“或运算”得来。存在的话输出YES,并输出任意一组符合条件的A矩阵,否则输出NO。
	我的方法还是偏暴力,首先开一个二维数组存A矩阵,并对其初始化元素全为1。首先这样考虑,如果Bij对应的值为0,那么A矩阵的第i行和第j列一定全部为0,出现一个1都不行,因为“或运算”全0出0。这样更新一遍后,A矩阵的0的位置就能全部确定了。接下来最暴力的部分O(n*m*max(n,m))的判断A矩阵每个位置的元素是否满足B矩阵中0或1的条件。最后flag没变的话,说明存在这样的A矩阵,同时A矩阵也被我们更新好了,输出即可;反之,不存在输出NO。
完整代码:
<pre name="code" class="n">#include <functional>#include <algorithm>#include <iostream>#include <fstream>#include <sstream>#include <iomanip>#include <numeric>#include <cstring>#include <climits>#include <cassert>#include <complex>#include <cstdio>#include <string>#include <vector>#include <bitset>#include <queue>#include <stack>#include <cmath>#include <ctime>#include <list>#include <set>#include <map>using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")typedef long long LL;typedef double DB;typedef unsigned uint;typedef unsigned long long uLL;/** Constant List .. **/ //{const int MOD = int(1e9)+7;const int INF = 0x3f3f3f3f;const LL INFF = 0x3f3f3f3f3f3f3f3fLL;const DB EPS = 1e-9;const DB OO = 1e20;const DB PI = acos(-1.0); //M_PI;int n , m;int g[1111][1111];int res[1111][1111];bool check_0(int x , int y){    for(int i = 0 ; i < m ; i ++)    {        if(res[x][i] == 1)            return false;    }    for(int i = 0 ; i < n ; i ++)    {        if(res[i][y] == 1)            return false;    }    return true;}bool check_1(int x , int y){    for(int i = 0 ; i < m ; i ++)    {        if(res[x][i] == 1)            return true;    }    for(int i = 0 ; i < n ; i ++)    {        if(res[i][y] == 1)            return true;    }    return false;}int main(){    #ifdef DoubleQ    freopen("in.txt","r",stdin);    #endif    while(~scanf("%d%d",&m,&n))    {        for(int i = 0 ; i < m ; i ++)        {            for(int j = 0 ; j < n ; j ++)            {                scanf("%d",&g[i][j]);            }        }        for(int i = 0 ; i < m ; i ++)        {            for(int j = 0 ; j < n ; j ++)            {                res[i][j] = 1;            }        }        //int flag = 0 ;        for(int i = 0 ; i < m ; i ++)        {            for(int j = 0 ; j < n ; j ++)            {                if(g[i][j] == 0)                {                    for(int k = 0 ; k < n ; k ++)                        res[i][k] = 0;                    for(int k = 0 ; k < m ; k ++)                        res[k][j] = 0;                }            }        }        int flag1 = 0;        for(int i = 0 ; i < m ; i ++)        {            for(int j = 0 ; j < n ; j ++)            {                if(g[i][j] == 0)                {                    if(!check_0(i , j))                        flag1 = 1;                }                else if(g[i][j] == 1)                {                    if(!check_1(i , j))                        flag1 = 1;                }                if(flag1)                    break;            }            if(flag1)                break;        }        if(flag1)            printf("NO\n");        else        {            printf("YES\n");            for(int i = 0  ; i < m  ; i ++)            {                for(int j = 0 ; j < n ; j ++)                {                    printf("%d%c",res[i][j], j == n - 1 ? '\n' : ' ');                }            }        }    }}


Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn